Detection of Cigar Defect Based on the Improved YOLOv5 Algorithm

被引:0
|
作者
Yang, Xinan [1 ]
Gao, Sen [2 ]
Xia, Chen [3 ]
Zhang, Bo [3 ]
Chen, Rui [2 ]
Gao, Jie [2 ]
Zhu, Wenkui [1 ]
机构
[1] CNTC, Zhengzhou Tobacco Res Inst, Zhengzhou, Peoples R China
[2] China Tobacco Ind Co Ltd, Great Wall Cigar Factory Sichuan, Deyang, Peoples R China
[3] China Tobacco Zhejiang Ind Co Ltd, Technol Ctr, Hangzhou, Peoples R China
来源
2024 IEEE 4TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND ARTIFICIAL INTELLIGENCE, SEAI 2024 | 2024年
关键词
YOLOv5; BiFPN; EPSA; manufactured cigar; detection;
D O I
10.1109/SEAI62072.2024.10674565
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To achieve the automatic detection of blue spots, plaques, and desquamation defects of manufactured cigars, an improved YOLOv5 model is proposed for the high-precision detection of manufactured cigar defects in the production process. The EPSA attention mechanism is added to the YOLOv5 model to make the network focused on the defect location. The PAN structure is replaced by the BiFPN structure in the Neck part of the model, which enhances the multi-scale fusion of features. Also, with the introduction of BiFPN in YOLOv5, the performances of the network with different attention mechanisms are compared. The experimental results show that the YOLOv5BE improves by 2.69 % at the mAP@0.5 compared with YOLOv5, reaching 94.15%. Therefore, the improved YOLOv5 model can effectively detect blue spots, disease spots, and desquamation defects of manufactured cigars, and provide technical support for the intelligent detection of manufactured cigars.
引用
收藏
页码:99 / 106
页数:8
相关论文
共 50 条
  • [1] Lightweight improved YOLOv5 algorithm for PCB defect detection
    Xie, Yinggang
    Zhao, Yanwei
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (01)
  • [2] Defect Detection for Metal Shaft Surfaces Based on an Improved YOLOv5 Algorithm and Transfer Learning
    Li, Bi
    Gao, Quanjie
    SENSORS, 2023, 23 (07)
  • [3] An Aerial Image Detection Algorithm Based on Improved YOLOv5
    Shan, Dan
    Yang, Zhi
    Wang, Xiaofeng
    Meng, Xiangdong
    Zhang, Guangwei
    SENSORS, 2024, 24 (08)
  • [4] Detection of Green Asparagus in Complex Environments Based on the Improved YOLOv5 Algorithm
    Hong, Weiwei
    Ma, Zenghong
    Ye, Bingliang
    Yu, Gaohong
    Tang, Tao
    Zheng, Mingfeng
    SENSORS, 2023, 23 (03)
  • [5] An Improved YOLOv5 with Structural Reparameterization for Surface Defect Detection
    Han, Yixuan
    Zheng, Liying
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT II, 2023, 14255 : 90 - 101
  • [6] Research on Mask-Wearing Detection Algorithm Based on Improved YOLOv5
    Guo, Shuyi
    Li, Lulu
    Guo, Tianyou
    Cao, Yunyu
    Li, Yinlei
    SENSORS, 2022, 22 (13)
  • [7] A Visual Fault Detection Algorithm of Substation Equipment Based on Improved YOLOv5
    Wu, Yuezhong
    Xiao, Falong
    Liu, Fumin
    Sun, Yuxuan
    Deng, Xiaoheng
    Lin, Lixin
    Zhu, Congxu
    APPLIED SCIENCES-BASEL, 2023, 13 (21):
  • [8] Helmet detection method based on improved YOLOv5
    Hou G.
    Chen Q.
    Yang Z.
    Zhang Y.
    Zhang D.
    Li H.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2024, 46 (02): : 329 - 342
  • [9] Insulator Breakage Detection Based on Improved YOLOv5
    Han, Gujing
    He, Min
    Gao, Mengze
    Yu, Jinyun
    Liu, Kaipei
    Qin, Liang
    SUSTAINABILITY, 2022, 14 (10)
  • [10] A Real-Time Fish Target Detection Algorithm Based on Improved YOLOv5
    Li, Wanghua
    Zhang, Zhenkai
    Jin, Biao
    Yu, Wangyang
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (03)