Automated Laser-Assisted Single-Cell Sorting for Cell Functional and RNA Sequencing

被引:2
作者
Wang, Yuntong [1 ,2 ,3 ,4 ]
Xue, Ying [5 ]
Wang, Huan [1 ,3 ]
Qu, Yue [5 ,6 ]
Zhang, Kunlong [5 ]
Shang, Lindong [1 ,2 ,3 ,4 ]
Liang, Peng [1 ,2 ,3 ,4 ]
Chen, Fuyuan [1 ,2 ,3 ,4 ]
Tang, Xusheng [1 ,2 ,3 ,4 ]
Luo, Wei [7 ]
Chin, Lip Ket [8 ]
Feng, Shilun [9 ]
Li, Bei [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China
[2] Chinese Acad Sci, Key Lab Adv Mfg Opt Syst, Changchun 130033, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] State Key Lab Appl Opt, Changchun 130033, Peoples R China
[5] Hooke Lab, Changchun 130033, Peoples R China
[6] Haining High Tech Res Inst, Jiaxing 314408, Zhejiang, Peoples R China
[7] Hong Kong Polytech Univ, Dept Elect & Elect Engn, Hong Kong 999077, Peoples R China
[8] City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong 999077, Peoples R China
[9] Chinese Acad Sci, State Key Lab Transducer Technol, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China
基金
中国国家自然科学基金;
关键词
single-cell sorting; single-cell analysis; laser-induced forward transfer; micropores; RNAsequencing; SEPARATION; POLYMERS;
D O I
10.1021/acssensors.4c02417
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Accurate and efficient sorting of single target cells is crucial for downstream single-cell analysis, such as RNA sequencing, to uncover cellular heterogeneity and functional characteristics. However, conventional single-cell sorting techniques, such as manual micromanipulation or fluorescence-activated cell sorting, do not match current demands and are limited by low throughput, low sorting efficiency and precision, or limited cell viability. Here, we report an automated, highly efficient single-cell sorter, integrating laser-induced forward transfer (LIFT) with a high-throughput picoliter micropore array. The micropore array was surface-functionalized to manipulate liquid surface tension, facilitating the formation of single-cell picoliter droplets in the micropores to realize automated and highly efficient (>80%) single-cell isolation. Using an in-house built microscopic system, rare target cells were identified and automatically retrieved by LIFT with precise sorting efficiency (about 100%) for downstream single-cell analysis while maintaining high cell viability (about 80%). As a case demonstration, we demonstrated the accurate sorting of rare transfected PC-9 cells and post-transfection cell culture, minimizing cell loss and the risk of contamination. Furthermore, we performed single-cell RNA sequencing and showed that high-quality single-cell transcriptome information was efficiently and reliably obtained during cell sorting, preventing additional costs due to low sorting accuracy. The single-cell sorter will become invaluable for single-cell analysis, laying the foundation for multiomics analysis and precision medicine research.
引用
收藏
页码:846 / 856
页数:11
相关论文
共 37 条
[1]   Separation of neural stem cells by whole cell membrane capacitance using dielectrophoresis [J].
Adams, Tayloria N. G. ;
Jiang, Alan Y. L. ;
Vyas, Prema D. ;
Flanagan, Lisa A. .
METHODS, 2018, 133 :91-103
[2]   Flow cytometry: basic principles and applications [J].
Adan, Aysun ;
Alizada, Gunel ;
Kiraz, Yagmur ;
Baran, Yusuf ;
Nalbant, Ayten .
CRITICAL REVIEWS IN BIOTECHNOLOGY, 2017, 37 (02) :163-176
[3]   Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity [J].
Baret, Jean-Christophe ;
Miller, Oliver J. ;
Taly, Valerie ;
Ryckelynck, Michael ;
El-Harrak, Abdeslam ;
Frenz, Lucas ;
Rick, Christian ;
Samuels, Michael L. ;
Hutchison, J. Brian ;
Agresti, Jeremy J. ;
Link, Darren R. ;
Weitz, David A. ;
Griffiths, Andrew D. .
LAB ON A CHIP, 2009, 9 (13) :1850-1858
[4]   Cell and protein compatibility of parylene-C surfaces [J].
Chang, Tracy Y. ;
Yadav, Vikramaditya G. ;
De Leo, Sarah ;
Mohedas, Agustin ;
Rajalingam, Birnal ;
Chen, Chia-Ling ;
Selvarasah, Selvapraba ;
Dokmeci, Mehmet R. ;
Khademhosseini, Ali .
LANGMUIR, 2007, 23 (23) :11718-11725
[5]   Millifluidics, microfluidics, and nanofluidics: manipulating fluids at varying length scales [J].
Chen, L. ;
Yang, C. ;
Xiao, Y. ;
Yan, X. ;
Hu, L. ;
Eggersdorfer, M. ;
Chen, D. ;
Weitz, D. A. ;
Ye, F. .
MATERIALS TODAY NANO, 2021, 16
[6]   A microfluidic platform integrated with field-effect transistors for enumeration of circulating tumor cells [J].
Chen, Yi-Hong ;
Pulikkathodi, Anil Kumar ;
Ma, Yu-Dong ;
Wang, Yu-Lin ;
Lee, Gwo-Bin .
LAB ON A CHIP, 2019, 19 (04) :618-625
[7]   Optically-induced-dielectrophoresis (ODEP)-based cell manipulation in a microfluidic system for high-purity isolation of integral circulating tumor cell (CTC) clusters based on their size characteristics [J].
Chiu, Tzu-Keng ;
Chao, A-Ching ;
Chou, Wen-Pin ;
Liao, Chia-Jung ;
Wang, Hung-Ming ;
Chang, Jyun-Huan ;
Chen, Ping-Hei ;
Wu, Min-Hsien .
SENSORS AND ACTUATORS B-CHEMICAL, 2018, 258 :1161-1173
[8]   Effect of oxygen plasma-treatment on surface functional groups, wettability, and nanotopography features of medically relevant polymers with various crystallinities [J].
Chytrosz-Wrobel, Paulina ;
Golda-Cepa, Monika ;
Stodolak-Zych, Ewa ;
Rysz, Jakub ;
Kotarba, Andrzej .
APPLIED SURFACE SCIENCE ADVANCES, 2023, 18
[9]   Cell separation using tilted-angle standing surface acoustic waves [J].
Ding, Xiaoyun ;
Peng, Zhangli ;
Lin, Sz-Chin Steven ;
Geri, Michela ;
Li, Sixing ;
Li, Peng ;
Chen, Yuchao ;
Dao, Ming ;
Suresh, Subra ;
Huang, Tony Jun .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (36) :12992-12997
[10]   Subnanoliter precision piezo pipette for single-cell isolation and droplet printing [J].
Francz, Barbara ;
Ungai-Salanki, Rita ;
Sautner, Eva ;
Horvath, Robert ;
Szabo, Balint .
MICROFLUIDICS AND NANOFLUIDICS, 2020, 24 (02)