PRECISION AGRICULTURE BASED ON MACHINE LEARNING AND REMOTE SENSING TECHNIQUES

被引:0
|
作者
Alshaya, Shaya A. [1 ]
机构
[1] Majmaah Univ, Coll Sci, Comp Sci Dept, Al Zulfi 11932, Saudi Arabia
来源
COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES | 2025年 / 78卷 / 01期
关键词
remote sensing; precision agriculture; artificial intelligence; soil moisture; vegetation indices;
D O I
10.7546/CRABS.2025.01.12
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In today's agricultural landscape, precision is crucial, utilizing advanced technologies like IoT, AI, aircraft, and satellite systems. Smart agriculture aims to revolutionize production by monitoring soil quality and employing data anUAVs, remote sensing provides crucial data and imagery for olive cultivation. Cloud platforms with satellite data offer invaluable information, aiding public and private decision-making. Proposing an AI-powered application combined with remote sensing, this paper develops predictive models for soil moisture and with decision tree and extra trees regressor models, highlighting their effectiveness. This research transforms agricultural productivity through advanced technology and data-driven methodologies.
引用
收藏
页码:101 / 108
页数:8
相关论文
共 50 条
  • [1] Integration of Remote Sensing and Machine Learning for Precision Agriculture: A Comprehensive Perspective on Applications
    Wang, Jun
    Wang, Yanlong
    Li, Guang
    Qi, Zhengyuan
    AGRONOMY-BASEL, 2024, 14 (09):
  • [2] Remote sensing applications for precision agriculture: A learning community approach
    Seelan, SK
    Laguette, S
    Casady, GM
    Seielstad, GA
    REMOTE SENSING OF ENVIRONMENT, 2003, 88 (1-2) : 157 - 169
  • [3] The Data Acquisition for Precision Agriculture Based on Remote Sensing
    Ma, Qingyuan
    Chen, Qiang
    Shang, Qingsheng
    Zhang, Chao
    2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 888 - +
  • [4] Remote Sensing Insights: Leveraging Advanced Machine Learning Models and Optimization for Enhanced Accuracy in Precision Agriculture
    Altherwy, Youssef N.
    Roman, Ali
    Naqvi, Syed Rameez
    Alsuhaibani, Anas
    Akram, Tallha
    IEEE ACCESS, 2024, 12 : 132290 - 132302
  • [5] Remote sensing requirements for precision agriculture
    Robert, PC
    MULTISPECTRAL IMAGING FOR TERRESTRIAL APPLICATIONS, 1996, 2818 : 54 - 58
  • [6] Enabling Regenerative Agriculture Using Remote Sensing and Machine Learning
    Ogungbuyi, Michael Gbenga
    Guerschman, Juan P. P.
    Fischer, Andrew M. M.
    Crabbe, Richard Azu
    Mohammed, Caroline
    Scarth, Peter
    Tickle, Phil
    Whitehead, Jason
    Harrison, Matthew Tom
    LAND, 2023, 12 (06)
  • [7] Review-Machine Learning Techniques in Wireless Sensor Network Based Precision Agriculture
    Mekonnen, Yemeserach
    Namuduri, Srikanth
    Burton, Lamar
    Sarwat, Arif
    Bhansali, Shekhar
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 167 (03)
  • [8] Dust source susceptibility mapping based on remote sensing and machine learning techniques
    Jafari, Reza
    Amiri, Mohadeseh
    Asgari, Fatemeh
    Tarkesh, Mostafa
    ECOLOGICAL INFORMATICS, 2022, 72
  • [9] Machine Learning Based Soft Sensing Tool for the Prediction of Leaf Wetness Duration in Precision Agriculture
    Arostegi, Maria
    Manjarres, Diana
    Bilbao, Sonia
    Del Ser, Javier
    16TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS (SOCO 2021), 2022, 1401 : 525 - 535
  • [10] Precision Agriculture by Integration of Algorithms and Remote Sensing
    Rao, G. Bhaskar N.
    AGRICULTURAL RESEARCH, 2023, 12 (04) : 397 - 407