Bithiophene Imide-Based Self-Assembled Monolayers (SAMs) on NiOx for High-Performance Tin Perovskite Solar Cells Fabricated Using a Two-Step Approach

被引:0
作者
Velusamy, Arulmozhi [1 ]
Kuan, Chun-Hsiao [2 ,3 ]
Lin, Tsung-Chun [2 ,3 ]
Shih, Yun-Sheng [2 ,3 ]
Liu, Cheng-Liang [4 ]
Zeng, De-You [1 ]
Li, Yu-Gi [1 ]
Wang, Yu-Hao [4 ]
Jiang, Xianyuan [5 ]
Chen, Ming-Chou [1 ]
Diau, Eric Wei-Guang [2 ,3 ,6 ]
机构
[1] Natl Cent Univ, New Generat Light Driven Photovolta Modules, Dept Chem & Res Ctr, Taoyuan 32001, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Dept Appl Chem, Hsinchu 300093, Taiwan
[3] Natl Yang Ming Chiao Tung Univ, Inst Mol Sci, Hsinchu 300093, Taiwan
[4] Natl Taiwan Univ, Dept Mat Sci & Engn, Taipei 10617, Taiwan
[5] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[6] Natl Yang Ming Chiao Tung Univ, Ctr Emergent Funct Matter Sci, Hsinchu 300093, Taiwan
关键词
bithiophene imide; NiOx; self-assembled monolayer; tin perovskite solar cells; anchoring groups; HALIDE PEROVSKITES; EFFICIENT; GENERATION; COPOLYMERS; DESIGN; LAYERS;
D O I
10.1021/acsami.4c15688
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Three new bithiophene imide (BTI)-based organic small molecules, BTI-MN-b4 (1), BTI-MN-b8 (2), and BTI-MN-b16 (3), with varied alkyl side chains, were developed and employed as self-assembled monolayers (SAMs) applied to NiOx films in tin perovskite solar cells (TPSCs). The NiOx layer has the effect of modifying the hydrophilicity and the surface roughness of ITO for SAM to uniformly deposit on it. The side chains of the SAM molecules play a vital role in the formation of a high-quality perovskite layer in TPSCs. The single crystal structure of BTI-MN-b8 (2) was successfully obtained, indicating that a uniform SAM can be formed on the NiOx/ITO substrate with an appropriate size of the alkyl side chain. By combining BTI-MN-b8 (2) with NiOx, a maximum PCE of 8.6% was achieved. The TPSC devices utilizing the NiOx/BTI-MN-b8 configuration demonstrated outstanding long-term stability, retaining similar to 80% of their initial efficiency after 3600 h. Comprehensive characterizations, including thermal, optical, electrochemical, and morphological analyses, alongside photovoltaic evaluation, were carried out thoroughly. This study presents a pioneering strategy for improving TPSC performance, highlighting the efficacy of combining organic SAMs with NiOx as the HTM and offering a promising pathway for future advances in TPSC technology using a two-step fabrication approach.
引用
收藏
页码:952 / 962
页数:11
相关论文
共 72 条
  • [31] Seo J., Park S., Chan Kim Y., Jeon N.J., Noh J.H., Yoon S.C., Seok S.I., Benefits of Very Thin PCBM and Lif Layers for Solution-Processed p-i-n Perovskite Solar Cells, Energy Environ. Sci., 7, pp. 2642-2646, (2014)
  • [32] Facchetti A., van der Boom M.E., Abbotto A., Beverina L., Marks T.J., Pagani G.A., Design and Preparation of Zwitterionic Organic Thin Films: Self-Assembled Siloxane-Based, Thiophene-Spaced N-Benzylpyridinium Dicyanomethanides as Nonlinear Optical Materials, Langmuir, 17, pp. 5939-5942, (2001)
  • [33] Al-Ashouri A., Magomedov A., Ross M., Jost M., Talaikis M., Chistiakova G., Bertram T., Marquez J.A., Kohnen E., Kasparavicius E., Levcenco S., Gil-Escrig L., Hages C.J., Schlatmann R., Rech B., Malinauskas T., Unold T., Kaufmann C.A., Korte L., Niaura G., Getautis V., Albrecht S., Conformal Monolayer Contacts with Lossless Interfaces for Perovskite Single Junction and Monolithic Tandem Solar Cells, Energy Environ. Sci., 12, pp. 3356-3369, (2019)
  • [34] Kapil G., Bessho T., Sanehira Y., Sahamir S.R., Chen M., Baranwal A.K., Liu D., Sono Y., Hirotani D., Nomura D., Nishimura K., Kamarudin M.A., Shen Q., Segawa H., Hayase S., Tin-Lead Perovskite Solar Cells Fabricated on Hole Selective Monolayers, ACS Energy Lett., 7, pp. 966-974, (2022)
  • [35] Aktas E., Phung N., Kobler H., Gonzalez D.A., Mendez M., Kafedjiska I., Turren-Cruz S.-H., Wenisch R., Lauermann I., Abate A., Palomares E., Understanding the Perovskite/Self-Assembled Selective Contact Interface for Ultra-Stable and Highly Efficient p-i-n Perovskite Solar Cells, Energy Environ. Sci., 14, pp. 3976-3985, (2021)
  • [36] Ullah A., Park K.H., Nguyen H.D., Siddique Y., Shah S.F.A., Tran H., Park S., Lee S.I., Lee K.-K., Han C.-H., Kim K., Ahn S., Jeong I., Park Y.S., Hong S., Novel Phenothiazine-Based Self-Assembled Monolayer as a Hole Selective Contact for Highly Efficient and Stable p-i-n Perovskite Solar Cells, Adv. Energy Mater., 12, (2022)
  • [37] Bai Y., Dong Q., Shao Y., Deng Y., Wang Q., Shen L., Wang D., Wei W., Huang J., Enhancing Stability and Efficiency of Perovskite Solar Cells with Crosslinkable Silane-Functionalized and Doped Fullerene, Nat. Commun., 7, (2016)
  • [38] Kim S.Y., Cho S.J., Byeon S.E., He X., Yoon H.J., Self-Assembled Monolayers as Interface Engineering Nanomaterials in Perovskite Solar Cells, Adv. Energy Mater., 10, (2020)
  • [39] Magomedov A., Al-Ashouri A., Kasparavicius E., Strazdaite S., Niaura G., Jost M., Malinauskas T., Albrecht S., Getautis V., Self-Assembled Hole Transporting Monolayer for Highly Efficient Perovskite Solar Cells, Adv. Energy Mater., 8, (2018)
  • [40] Wang Y., Liao Q., Chen J., Huang W., Zhuang X., Tang Y., Li B., Yao X., Feng X., Zhang X., Su M., He Z., Marks T.J., Facchetti A., Guo X., Teaching an Old Anchoring Group New Tricks: Enabling Low-Cost, Eco-Friendly Hole-Transporting Materials for Efficient and Stable Perovskite Solar Cells, J. Am. Chem. Soc., 142, pp. 16632-16643, (2020)