Bithiophene Imide-Based Self-Assembled Monolayers (SAMs) on NiOx for High-Performance Tin Perovskite Solar Cells Fabricated Using a Two-Step Approach

被引:0
作者
Velusamy, Arulmozhi [1 ]
Kuan, Chun-Hsiao [2 ,3 ]
Lin, Tsung-Chun [2 ,3 ]
Shih, Yun-Sheng [2 ,3 ]
Liu, Cheng-Liang [4 ]
Zeng, De-You [1 ]
Li, Yu-Gi [1 ]
Wang, Yu-Hao [4 ]
Jiang, Xianyuan [5 ]
Chen, Ming-Chou [1 ]
Diau, Eric Wei-Guang [2 ,3 ,6 ]
机构
[1] Natl Cent Univ, New Generat Light Driven Photovolta Modules, Dept Chem & Res Ctr, Taoyuan 32001, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Dept Appl Chem, Hsinchu 300093, Taiwan
[3] Natl Yang Ming Chiao Tung Univ, Inst Mol Sci, Hsinchu 300093, Taiwan
[4] Natl Taiwan Univ, Dept Mat Sci & Engn, Taipei 10617, Taiwan
[5] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[6] Natl Yang Ming Chiao Tung Univ, Ctr Emergent Funct Matter Sci, Hsinchu 300093, Taiwan
关键词
bithiophene imide; NiOx; self-assembled monolayer; tin perovskite solar cells; anchoring groups; HALIDE PEROVSKITES; EFFICIENT; GENERATION; COPOLYMERS; DESIGN; LAYERS;
D O I
10.1021/acsami.4c15688
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Three new bithiophene imide (BTI)-based organic small molecules, BTI-MN-b4 (1), BTI-MN-b8 (2), and BTI-MN-b16 (3), with varied alkyl side chains, were developed and employed as self-assembled monolayers (SAMs) applied to NiOx films in tin perovskite solar cells (TPSCs). The NiOx layer has the effect of modifying the hydrophilicity and the surface roughness of ITO for SAM to uniformly deposit on it. The side chains of the SAM molecules play a vital role in the formation of a high-quality perovskite layer in TPSCs. The single crystal structure of BTI-MN-b8 (2) was successfully obtained, indicating that a uniform SAM can be formed on the NiOx/ITO substrate with an appropriate size of the alkyl side chain. By combining BTI-MN-b8 (2) with NiOx, a maximum PCE of 8.6% was achieved. The TPSC devices utilizing the NiOx/BTI-MN-b8 configuration demonstrated outstanding long-term stability, retaining similar to 80% of their initial efficiency after 3600 h. Comprehensive characterizations, including thermal, optical, electrochemical, and morphological analyses, alongside photovoltaic evaluation, were carried out thoroughly. This study presents a pioneering strategy for improving TPSC performance, highlighting the efficacy of combining organic SAMs with NiOx as the HTM and offering a promising pathway for future advances in TPSC technology using a two-step fabrication approach.
引用
收藏
页码:952 / 962
页数:11
相关论文
共 72 条
  • [1] Freitag M., Teuscher J., Saygili Y., Zhang X., Giordano F., Liska P., Hua J., Zakeeruddin S.M., Moser J.-E., Gratzel M., Hagfeldt A., Dye-Sensitized Solar Cells for Efficient Power Generation under Ambient Lighting, Nat. Photonics, 11, pp. 372-378, (2017)
  • [2] Baran D., Ashraf R.S., Hanifi D.A., Abdelsamie M., Gasparini N., Rohr J.A., Holliday S., Wadsworth A., Lockett S., Neophytou M., Emmott C.J.M., Nelson J., Brabec C.J., Amassian A., Salleo A., Kirchartz T., Durrant J.R., McCulloch I., Reducing the Efficiency-Stability-Cost Gap of Organic Photovoltaics with Highly Efficient and Stable Small Molecule Acceptor Ternary Solar Cells, Nat. Mater., 16, pp. 363-369, (2017)
  • [3] Jeon N.J., Noh J.H., Yang W.S., Kim Y.C., Ryu S., Seo J., Seok S.I., Compositional Engineering of Perovskite Materials for High-Performance Solar Cells, Nature, 517, pp. 476-480, (2015)
  • [4] Zhao Y., Zhu K., Organic-Inorganic Hybrid Lead Halide Perovskites for Optoelectronic and Electronic Applications, Chem. Soc. Rev., 45, pp. 655-689, (2016)
  • [5] Correa-Baena J.-P., Abate A., Saliba M., Tress W., Jesper Jacobsson T., Gratzel M., Hagfeldt A., The Rapid Evolution of Highly Efficient Perovskite Solar Cells, Energy Environ. Sci., 10, pp. 710-727, (2017)
  • [6] Velusamy A., Yau S., Liu C.-L., Ezhumalai Y., Kumaresan P., Chen M.-C., Recent Studies on Small Molecular and Polymeric Hole-Transporting Materials for High-Performance Perovskite Solar Cells, J. Chin. Chem. Soc., 70, pp. 2046-2063, (2023)
  • [7] Kojima A., Teshima K., Shirai Y., Miyasaka T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc., 131, pp. 6050-6051, (2009)
  • [8] Liu S., Li J., Xiao W., Chen R., Sun Z., Zhang Y., Lei X., Hu S., Kober-Czerny M., Wang J., Ren F., Zhou Q., Raza H., Gao Y., Ji Y., Li S., Li H., Qiu L., Huang W., Zhao Y., Xu B., Liu Z., Snaith H.J., Park N.-G., Chen W., Buried Interface Molecular Hybrid for Inverted Perovskite Solar Cells, Nature, 632, pp. 536-542, (2024)
  • [9] Stranks S.D., Eperon G.E., Grancini G., Menelaou C., Alcocer M.J.P., Leijtens T., Herz L.M., Petrozza A., Snaith H.J., Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber, Science, 342, pp. 341-344, (2013)
  • [10] Hardin B.E., Snaith H.J., McGehee M.D., The Renaissance of Dye-Sensitized Solar Cells, Nat. Photonics, 6, pp. 162-169, (2012)