Explainable Long and Short-Term Pattern Detection in Projected Sequential Data

被引:0
作者
Bittner, Matthias [1 ]
Hinterreiter, Andreas [2 ]
Eckelt, Klaus [2 ]
Streit, Marc [2 ]
机构
[1] TU Wien, Christian Doppler Lab Embedded Machine Learning, Gusshausstr 27-29, A-1040 Vienna, Austria
[2] Johannes Kepler Univ Linz, Altenberger Str 69, A-4040 Linz, Austria
来源
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2023, PT III | 2025年 / 2135卷
基金
奥地利科学基金会;
关键词
pattern-detection; projected paths; self-attention; TIME; REDUCTION;
D O I
10.1007/978-3-031-74633-8_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Combining explainable artificial intelligence and information visualization holds great potential for users to understand and reason about complex multidimensional sequential data. This work proposes a semi-supervised two-step approach for extracting long- and short-term patterns in low-dimensional representations of sequential data. First, unsupervised sequence clustering is used to identify long-term patterns. Second, these long-term patterns serve as supervisory information for training a self-attention-based sequence classification model. The resulting feature embedding is used to identify short-term patterns. The approach is validated on a self-generated dataset consisting of heart-shaped paths with different sampling rates, rotations, scales, and translations. The results demonstrate the approach's effectiveness for clustering semantically similar paths and/or path sequences. This detection of both global long-term patterns and local short-term patterns facilitates the understanding and reasoning about complex multidimensional sequential data.
引用
收藏
页码:53 / 68
页数:16
相关论文
共 18 条
  • [1] TimeCluster: dimension reduction applied to temporal data for visual analytics
    Ali, Mohammed
    Jones, Mark W.
    Xie, Xianghua
    Williams, Mark
    [J]. VISUAL COMPUTER, 2019, 35 (6-8) : 1013 - 1026
  • [2] Time Curves: Folding Time to Visualize Patterns of Temporal Evolution in Data
    Bach, Benjamin
    Shi, Conglei
    Heulot, Nicolas
    Madhyastha, Tara
    Grabowski, Tom
    Dragicevic, Pierre
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2016, 22 (01) : 559 - 568
  • [3] Visual Exploration of Relationships and Structure in Low-Dimensional Embeddings
    Eckelt, Klaus
    Hinterreiter, Andreas
    Adelberger, Patrick
    Walchshofer, Conny
    Dhanoa, Vaishali
    Humer, Christina
    Heckmann, Moritz
    Steinparz, Christian
    Streit, Marc
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2023, 29 (07) : 3312 - 3326
  • [4] ProjectionPathExplorer: Exploring Visual Patterns in Projected Decision-making Paths
    Hinterreiter, Andreas
    Steinparz, Christian
    Schoefl, Moritz
    Stitz, Holger
    Streit, Marc
    [J]. ACM TRANSACTIONS ON INTERACTIVE INTELLIGENT SYSTEMS, 2021, 11 (3-4) : 3 - 4
  • [5] Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers
    Hohman, Fred
    Kahng, Minsuk
    Pienta, Robert
    Chau, Duen Horng
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2019, 25 (08) : 2674 - 2693
  • [6] Keim D, 2008, LECT NOTES COMPUT SC, V4950, P154, DOI 10.1007/978-3-540-70956-5
  • [7] Clustering of time series data - a survey
    Liao, TW
    [J]. PATTERN RECOGNITION, 2005, 38 (11) : 1857 - 1874
  • [8] Lin H., 2020, AISC, V1107, P491, DOI [10.1007/978-981-15-3308, DOI 10.1007/978-981-15-3308]
  • [9] The Discriminative Power of Shape an Empirical Study in Time Series Matching
    Mendhurwar, Kaustubha
    Gu, Qing
    Mudur, Sudhir
    Popa, Tiberiu
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2018, 24 (05) : 1799 - 1813
  • [10] Multidimensional Projection for Visual Analytics: Linking Techniques with Distortions, Tasks, and Layout Enrichment
    Nonato, Luis Gustavo
    Aupetit, Michael
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2019, 25 (08) : 2650 - 2673