Measuring gravitational wave memory with LISA

被引:0
|
作者
Inchauspe, Henri [1 ,2 ,3 ]
Gasparotto, Silvia [4 ,5 ]
Blas, Diego [5 ,6 ]
Heisenberg, Lavinia [3 ]
Zosso, Jann [7 ,8 ]
Tiwari, Shubhanshu [9 ]
机构
[1] Katholieke Univ Leuven, Inst Theoret Phys, Celestijnenlaan 200D, B-3001 Leuven, Belgium
[2] Katholieke Univ Leuven, Leuven Grav Inst, Celestijnenlaan 200D,Box 2415, B-3001 Leuven, Belgium
[3] Heidelberg Univ, Inst Theoret Phys, Philosophenweg 16, D-69120 Heidelberg, Germany
[4] Univ Autonoma Barcelona, Dept Fis, Grp Fis Teor, Bellaterra 08193, Barcelona, Spain
[5] Barcelona Inst Sci & Technol BIST, Inst Fis Altes Energies IFAE, Campus UAB, Barcelona 08193, Spain
[6] Institucio Catalana Recerca & Estudis Avancats ICR, Passeig Lluis Co 23, Barcelona 08010, Spain
[7] Swiss Fed Inst Technol, Inst Theoret Phys, Wolfgang Pauli Str 27, CH-8093 Zurich, Switzerland
[8] Univ Bern, Inst Theoret Phys, Albert Einstein Ctr, Sidlerstr 5, CH-3012 Bern, Switzerland
[9] Univ Zurich, Phys Inst, Winterthurerstr 190, CH-8057 Zurich, Switzerland
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
MASSIVE BLACK-HOLES; HIGH-FREQUENCY; RADIATION; EVOLUTION; BURSTS; LIMIT;
D O I
10.1103/PhysRevD.111.044044
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Gravitational wave (GW) astronomy has revolutionized our capacity to explore nature. The next generation of observatories, among which the spaceborne detector Laser Interferometer Space Antenna (LISA) is expected to yield orders of magnitude of signal-to-noise-ratio improvement and reach fainter and novel features of general relativity. Among them, an exciting possibility is the detection of GW memory. Interpreted as a permanent deformation of the background spacetime after a GW perturbation has passed through the detector, GW memory offers a novel avenue to proof-test general relativity, access the nonlinear nature of gravity, and provide complementary information to better characterize the GW source. Previous studies have shown that GW memory detection from individual mergers of massive black hole binaries is expected with LISA. However, these works have not simulated the proper time-domain response of the detector to the GW memory. This work is filling this gap and presents the detection prospects of LISA regarding GW memory and the expected signature of GW memory on the data streams using the most upto-date LISA consortium simulations of the response. We focus on the GW memory of massive black hole binary mergers and use state-of-the-art population models to assess the likelihood of detecting the GW memory within the LISA lifetime. We conclude that GW memory will be a key feature of several events detected by LISA and will help to exploit the scientific potential of the mission fully.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Gravitational wave memory: A new approach to study modified gravity
    Du, Song Ming
    Nishizawa, Atsushi
    PHYSICAL REVIEW D, 2016, 94 (10)
  • [32] Gravitational wave peeps from EMRIs and their implication for LISA signal confusion noise
    Oliver, Daniel J.
    Johnson, Aaron D.
    Berrier, Joel
    Glampedakis, Kostas
    Kennefick, Daniel
    CLASSICAL AND QUANTUM GRAVITY, 2024, 41 (11)
  • [33] Primordial Gravitational Waves with LISA
    Ricciardone, Angelo
    11TH INTERNATIONAL LISA SYMPOSIUM, 2017, 840
  • [34] Post-Newtonian corrections to the gravitational-wave memory for quasicircular, inspiralling compact binaries
    Favata, Marc
    PHYSICAL REVIEW D, 2009, 80 (02):
  • [35] Stochastic Gravitational-wave Background from Binary Black Holes and Binary Neutron Stars and Implications for LISA
    Chen, Zu-Cheng
    Huang, Fan
    Huang, Qing-Guo
    ASTROPHYSICAL JOURNAL, 2019, 871 (01)
  • [36] Gravitational wave modes in matter
    Garg, Deepen
    Dodin, I. Y.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2022, (08):
  • [37] Examination of a simple example of gravitational wave memory
    Tolish, Alexander
    Bieri, Lydia
    Garfinkle, David
    Wald, Robert M.
    PHYSICAL REVIEW D, 2014, 90 (04):
  • [38] Prospects of detecting the nonlinear gravitational wave memory
    Johnson, Aaron D.
    Kapadia, Shasvath J.
    Osborne, Andrew
    Hixon, Alex
    Kennefick, Daniel
    PHYSICAL REVIEW D, 2019, 99 (04)
  • [39] Gravitational wave memory in de Sitter spacetime
    Bieri, Lydia
    Garfinkle, David
    Yau, Shing-Tung
    PHYSICAL REVIEW D, 2016, 94 (06)
  • [40] NANOGrav CONSTRAINTS ON GRAVITATIONAL WAVE BURSTS WITH MEMORY
    Arzoumanian, Z.
    Brazier, A.
    Burke-Spolaor, S.
    Chamberlin, S. J.
    Chatterjee, S.
    Christy, B.
    Cordes, J. M.
    Cornish, N. J.
    Demorest, P. B.
    Deng, X.
    Dolch, T.
    Ellis, J. A.
    Ferdman, R. D.
    Fonseca, E.
    Garver-Daniels, N.
    Jenet, F.
    Jones, G.
    Kaspi, V. M.
    Koop, M.
    Lam, M. T.
    Lazio, T. J. W.
    Levin, L.
    Lommen, A. N.
    Lorimer, D. R.
    Luo, J.
    Lynch, R. S.
    Madison, D. R.
    McLaughlin, M. A.
    McWilliams, S. T.
    Nice, D. J.
    Palliyaguru, N.
    Pennucci, T. T.
    Ransom, S. M.
    Siemens, X.
    Stairs, I. H.
    Stinebring, D. R.
    Stovall, K.
    Swiggum, J.
    Vallisneri, M.
    van Haasteren, R.
    Wang, Y.
    Zhu, W. W.
    ASTROPHYSICAL JOURNAL, 2015, 810 (02)