Synergetic engineering of Zeolitic Imidazolate framework for efficient oxygen evolution reaction

被引:1
作者
Usman, Muhammad [1 ]
Suliman, Munzir H. [1 ]
Ali, Maryum [1 ,5 ]
Garba, Mustapha D. [2 ]
Rasheed, Tahir [3 ]
Ahmad, Rabia [3 ]
Helal, Aasif [1 ]
Khan, Niaz Ali [4 ]
Tahir, Muhammad Nawaz [1 ,5 ]
机构
[1] King Fahd Univ Petr & Minerals KFUPM, Interdisciplinary Res Ctr Hydrogen Technol & Carbo, Dhahran 31261, Saudi Arabia
[2] Univ Glasgow, Dept Chem, Glasgow City G12 8QQ, Scotland
[3] King Fahd Univ Petr & Minerals KFUPM, Interdisciplinary Res Ctr Adv Mat, Dhahran 31261, Saudi Arabia
[4] King Fahd Univ Petr & Minerals KFUPM, Interdisciplinary Res Ctr Membranes & Water Secur, Dhahran 31261, Saudi Arabia
[5] King Fahd Univ Petr & Minerals Kingdom Saudi Arabi, Chem Dept, Dhahran 31261, Saudi Arabia
关键词
ZIF-8; Fe-ZIF-8; Electrocatalysis; Water splitting; HER; OER; Affordable and clean energy; ELECTROCATALYST; NANOPARTICLES; ELECTRICITY; REDUCTION; CATALYSTS; COBALT; OER; CO2;
D O I
10.1007/s42247-025-01006-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The current research details the engineering of a zeolitic imidazolate framework (ZIF-8) with iron (Fe) for electrocatalytic performance in energy generation using oxygen evolution reaction (OER). The prepared materials were characterized using analytical techniques such as powdered X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The findings indicate that Fe (II) can be utilized as an iron source to synthesize Fe-ZIF-8 directly. The catalytic activity of ZIF-8 for the OER appears to be lower than that of Fe-ZIF-8, which translates to reduced electrocatalytic OER overpotential. The overpotential of 10-Fe-ZIF-8 is significantly lower (i.e., 184 mV at 10 mA/cm2) than that of the benchmark IrO2 (eta 10 = 270 mV) vs. reference hydrogen electrode (RHE) for the OER. Fe-ZIF-8 electrode showed advantageous electrochemically active surface area and electrochemical impedance. Potentiostatic measurements were conducted for 55 h to evaluate the electrochemical stability of the Fe-ZIF-8 electrode with continuous oxygen production with a Faradic Efficiency (FE) of 94.6%. The research findings indicate the synergetic of Fe and Zn in ZIF-8 exhibits potential for electrocatalytic water splitting.
引用
收藏
页数:8
相关论文
共 49 条
[1]   Silicon detectors for the sLHC [J].
Affolder, A. ;
Aleev, A. ;
Allport, P. P. ;
Andricek, L. ;
Artuso, M. ;
Balbuena, J. P. ;
Barabash, L. ;
Barber, T. ;
Barcz, A. ;
Bassignana, D. ;
Bates, R. ;
Battaglia, M. ;
Beimforde, M. ;
Bemardini, J. ;
Betancourt, C. ;
Bilei, G. M. ;
Bisello, D. ;
Blue, A. ;
Bohm, J. ;
Bolla, G. ;
Borgia, A. ;
Borrello, L. ;
Bortoletto, D. ;
Boscardin, M. ;
Bosma, M. J. ;
Bowcock, T. J. V. ;
Breindl, M. ;
Broz, J. ;
Bruzzi, M. ;
Brzozowski, A. ;
Buhmann, P. ;
Buttar, C. ;
Campabadal, F. ;
Candelori, A. ;
Casse, G. ;
Charron, S. ;
Chren, D. ;
Cihangir, S. ;
Cindro, V. ;
Collins, P. ;
Gil, E. Cortina ;
Costinoaia, C. A. ;
Creanza, D. ;
Cristobal, C. ;
Dalla Betta, G. -F. ;
de Boer, W. ;
De Palma, M. ;
Demina, R. ;
Dierlamm, A. ;
Diez, S. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 658 (01) :11-16
[2]   Rational Design of the CdS/Fe-MOF Hybrid for Enhanced Hydrogen Evolution Reaction Catalysis [J].
Ali, Maryum ;
Pervaiz, Erum ;
Sohail, Umair .
ENERGY & FUELS, 2023, 37 (11) :7919-7926
[3]   Electrocatalytic Investigations into a PdNi Nanostructured Alloy Supported over a Graphite Sheet toward Pt-like Hydrogen Evolution Activity [J].
Babar, Noor-Ul-Ain ;
Khan, Abuzar ;
Suliman, Munzir H. ;
Marwat, Mohsin Ali ;
Tahir, Muhammad Nawaz ;
Ehsan, Muhammad Ali .
ENERGY & FUELS, 2022, 36 (11) :5910-5919
[4]   Recent developments on iron and nickel-based transition metal nitrides for overall water splitting: A critical review [J].
Batool, Mariam ;
Hameed, Arslan ;
Nadeem, Muhammad Arif .
COORDINATION CHEMISTRY REVIEWS, 2023, 480
[5]   Zn-Doped Porous CoNiP Nanosheet Arrays as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting [J].
Cai, ZhiCheng ;
Wu, AiPing ;
Yan, HaiJing ;
Tian, ChunGui ;
Guo, DeZheng ;
Fu, HongGang .
ENERGY TECHNOLOGY, 2020, 8 (01)
[6]   Recent strategies to improve the catalytic activity of pristine MOFs and their derived catalysts in electrochemical water splitting [J].
Chen, Chao ;
Li, Jinzhou ;
Lv, Zepeng ;
Wang, Meng ;
Dang, Jie .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (78) :30435-30463
[7]   Construction of ZIF-67/MIL-88(Fe, Ni) catalysts as a novel platform for efficient overall water splitting [J].
Chen, Pinghua ;
Duan, Xueqing ;
Li, Guifang ;
Qiu, Xianhua ;
Wang, Shuai ;
Huang, Yiping ;
Stavitskaya, Anna ;
Jiang, Hualin .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (20) :7170-7180
[8]   Sustainable Hydrogen Production from Offshore Marine Renewable Farms: Techno-Energetic Insight on Seawater Electrolysis Technologies [J].
d'Amore-Domenech, Rafael ;
Leo, Teresa J. .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2019, 7 (09) :8006-+
[9]   One-dimensional nitrogen-doped carbon frameworks embedded with zinc-cobalt nanoparticles for efficient overall water splitting [J].
Deng, Yaoyao ;
Liu, Haidong ;
Wei, Xuejiao ;
Ding, Linlin ;
Jiang, Fuhua ;
Cao, Xueqin ;
Zhou, Quanfa ;
Xiang, Mei ;
Bai, Jirong ;
Gu, Hongwei .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 585 :800-807
[10]   Low-Cost, High-Yield Zinc Oxide-Based Nanostars for Alkaline Overall Water Splitting [J].
Di Mari, Gisella Maria ;
Spadaro, Maria Chiara ;
Salutari, Francesco ;
Arbiol, Jordi ;
Bruno, Luca ;
Mineo, Giacometta ;
Bruno, Elena ;
Strano, Vincenzina ;
Mirabella, Salvo .
ACS OMEGA, 2023, 8 (40) :37023-37031