Energy-saving control of multi-zone purification ventilation system based on a novel multi-task learning framework

被引:0
|
作者
Fan, Kai [1 ]
Chen, Yao [2 ]
Lai, Changzhi [1 ]
Cai, Qilin [1 ]
Wu, Xi [1 ]
机构
[1] Soochow Univ, Coll Energy, Suzhou 215006, Peoples R China
[2] SuZhou Enerco Technol Co Ltd, Suzhou 215000, Peoples R China
基金
中国国家自然科学基金;
关键词
Cleanroom; Ventilation; Multi-task learning; Air balancing; Differential pressure; Energy saving; SIMULATION-BASED OPTIMIZATION; AIR BALANCING METHOD; CONTROL STRATEGY; CLEANROOMS; SELECTION;
D O I
10.1016/j.energy.2025.134744
中图分类号
O414.1 [热力学];
学科分类号
摘要
It is necessary to conduct a regular commissioning of purification ventilation systems to prevent issues such as filter clogging and imbalances in airflow to maintain optimal energy efficiency. This process should be performed at least once every three months, or after each switchover in on-duty cleanrooms. However, the traditional method consisting of testing, adjusting, and balancing (TAB) is time-consuming and inefficient, leading to a significant challenge for multi-area cleanrooms where airflow from neighboring rooms interferes with each other. To improve commissioning and energy efficiency, a comprehensive experimental platform with full airflow was specifically developed in this study to support key operational data. By leveraging the experimental platform to gather data, a multi-zone cleanroom ventilation steady-state prediction model (MCV-SPM) was developed, capitalizing on the multi-dimensional data-sharing capacity with the assistance of the multi-task learning (MTL) framework. Compared with traditional single-task models, this MTL-based model integrates two types of tasks, air balance and differential pressure control, using a shared bottom layer structure, which realizes cross-task information sharing and knowledge transfer, and improves the model's prediction accuracy and operation efficiency. Furthermore, a predict-then-optimize (PTO) control strategy is employed, where an optimization algorithm iteratively refines control parameters based on the MTL model's predictions. The mean error in the prediction of airflow for this system is only 1.8%, while the mean error in differential pressure is as low as 1.8 Pa, representing a notable enhancement over the 5.3% and 8 Pa of the existing methodology. Then, the proposed post-prediction optimal control strategy requires only 3% of the manual commissioning time (17.21 s) to reduce the average fan frequency by 7.5%, which corresponds to an estimated energy savings of 20.9%. This study presents a novel approach to improving the intelligent and efficient operation of purifying ventilation systems. The experimental platform utilized in the study adheres to the standards set forth for pharmaceutical cleanrooms. Further research may be directed towards the improvement of real-world data validation, the expansion of training datasets, and the investigation of the model's applicability across a range of industrial contexts.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Multi-task Learning Based Skin Segmentation
    Tan, Taizhe
    Shan, Zhenghao
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT III, KSEM 2023, 2023, 14119 : 360 - 369
  • [32] Multi-Task Learning Based Network Embedding
    Wang, Shanfeng
    Wang, Qixiang
    Gong, Maoguo
    FRONTIERS IN NEUROSCIENCE, 2020, 13
  • [33] Graph-based Multi-task Learning
    Li, Ya
    Tian, Xinmei
    2015 IEEE 16TH INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY (ICCT), 2015, : 730 - 733
  • [34] Control strategy of robotic manipulator based on multi-task reinforcement learning
    Wang, Tao
    Ruan, Ziming
    Wang, Yuyan
    Chen, Chong
    COMPLEX & INTELLIGENT SYSTEMS, 2025, 11 (03)
  • [35] A Multi-Task Dynamic Weight Optimization Framework Based on Deep Reinforcement Learning
    Mao, Lingpei
    Ma, Zheng
    Li, Xiang
    APPLIED SCIENCES-BASEL, 2025, 15 (05):
  • [36] Gearbox fault diagnosis method based on deep learning multi-task framework
    Chen, Yao
    Liang, Ruijun
    Ran, Wenfeng
    Chen, Weifang
    INTERNATIONAL JOURNAL OF STRUCTURAL INTEGRITY, 2023, 14 (03) : 401 - 415
  • [37] Attention Mechanism Based Multi-task Learning Framework for Transportation Time Prediction
    Yang, Miaomiao
    Wu, Tao
    Mao, Jiali
    Zhu, Kaixuan
    Zhou, Aoying
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT V, PAKDD 2024, 2024, 14649 : 376 - 388
  • [38] A semantic robotic grasping framework based on multi-task learning in stacking scenes
    Duan, Shengqi
    Tian, Guohui
    Wang, Zhongli
    Liu, Shaopeng
    Feng, Chenrui
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 121
  • [39] A GNN-based Multi-task Learning Framework for Personalized Video Search
    Zhang, Li
    Shi, Lei
    Zhao, Jiashu
    Yang, Juan
    Lyu, Tianshu
    Yin, Dawei
    Lu, Haiping
    WSDM'22: PROCEEDINGS OF THE FIFTEENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2022, : 1386 - 1394
  • [40] Multi-task learning for captioning images with novel words
    Zheng, He
    Wu, Jiahong
    Liang, Rui
    Li, Ye
    Li, Xuzhi
    IET COMPUTER VISION, 2019, 13 (03) : 294 - 301