In recent years, the synthesis of nanomaterials and nanoparticles (NPs) using laser ablation in liquid media (LAL) has become a topic of interest that has led to significant advancements in fundamental and applied research. The synthesis of nanomaterials using LAL is characterized by simplicity, ease of setup, and applicability to any solid or powdered material. A wide diversity of NPs and nanostructures with different compositions, sizes, and shapes can be obtained by adjusting the laser conditions, material type, and ablation medium. Laser ablation in liquids is a unique and clean technique capable of producing nanoparticles with tailored properties suitable for applications in many fields such as biomedicine, agriculture, catalysis, and electronics. This review article provides a brief overview of nanomaterial classification and synthesis methods, emphasizing laser ablation in liquids as a versatile method of nanomaterial fabrication. The basic principles of laser ablation, mechanisms involved in nanoparticle formation, parameters influencing the synthesis process, advantages and limitations, and some potential applications of LAL are also covered.