共 70 条
- [1] Mohanraj T., Shankar S., Rajasekar R., Sakthivel N., Pramanik A., Tool condition monitoring techniques in milling process—A review, J. Mater. Res. Technol, 9, pp. 1032-1042, (2020)
- [2] Vetrichelvan G., Sundaram S., Kumaran S.S., Velmurugan P., An investigation of tool wear using acoustic emission and genetic algorithm, J. Vib. Control, 21, pp. 3061-3066, (2015)
- [3] Liu C., Wang G., Li Z., Incremental learning for online tool condition monitoring using Ellipsoid ARTMAP network model, Appl. Soft Comput, 35, pp. 186-198, (2015)
- [4] Serin G., Sener B., Ozbayoglu A.M., Unver H.O., Review of tool condition monitoring in machining and opportunities for deep learning, Int. J. Adv. Manuf. Technol, 109, pp. 953-974, (2020)
- [5] Liu Z., Yue C., Li X., Liu X., Liang S.Y., Wang L., Research on tool wear based on 3D FEM simulation for milling process, J. Manuf. Mater. Process, 4, (2020)
- [6] Zhenyu S., Xin L., Ningmin D., Qibiao Y., Evaluation of tool wear and cutting performance considering effects of dynamic nodes movement based on FEM simulation, Chin. J. Aeronaut, 34, pp. 140-152, (2021)
- [7] Tran M.-Q., Doan H.-P., Vu V.Q., Vu L.T., Machine learning and IoT-based approach for tool condition monitoring: A review and future prospects, Measurement, 207, (2023)
- [8] Pimenov D.Y., Bustillo A., Wojciechowski S., Sharma V.S., Gupta M.K., Kuntoglu M., Artificial intelligence systems for tool condition monitoring in machining: Analysis and critical review, J. Intell. Manuf, 34, pp. 2079-2121, (2023)
- [9] Wu D., Jennings C., Terpenny J., Gao R.X., Kumara S., A comparative study on machine learning algorithms for smart manufacturing: Tool wear prediction using random forests, J. Manuf. Sci. Eng, 139, (2017)
- [10] Traini E., Bruno G., Lombardi F., Tool condition monitoring framework for predictive maintenance: A case study on milling process, Int. J. Prod. Res, 59, pp. 7179-7193, (2021)