Study on the performance of electric double-layer capacitors based on lignocellulose gel polymer electrolytes with different pH values for Zn2+-lignocellulose coordination mechanism

被引:0
作者
Wang, Yanzhou [1 ]
Huang, Yun [1 ]
Wang, Xu [1 ]
Bao, Jin [1 ]
Zou, Chao [1 ]
Wang, Xichang [1 ]
Zhang, Yunhe [1 ]
Zhang, Changjian [1 ]
Zhao, Zhongwei [1 ]
Li, Xing [1 ]
Wang, Mingshan [1 ]
Lin, Yuanhua [1 ]
Cao, Haijun [2 ]
机构
[1] Southwest Petr Univ, Sch New Energy & Mat, Chengdu 610500, Peoples R China
[2] Chinese Acad Med Sci, Inst Blood Transfus, Chengdu 610052, Peoples R China
基金
中国国家自然科学基金;
关键词
Lignocellulose; Gel polymer electrolyte; Electric double-layer capacitor; Coordinating Zn2+ with the -OH groups; SOLID-STATE SUPERCAPACITORS; IONIC LIQUID; CELLULOSE DISSOLUTION; GRAPHENE; ENERGY; FILM; NITROGEN;
D O I
10.1016/j.cej.2025.160418
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Developing sustainable gel polymer electrolyte (GPE) for electric double-layer capacitor (EDLC) using renewable natural polymers garners significant attention. Lignocellulose (LC), with its excellent mechanical strength and wettability, is an ideal material for polymer matrices. However, the abundant hydroxyl (-OH) groups in LC form extensive hydrogen bonding networks, resulting in a dense structure that severely limits electrolyte uptake and hinders electrochemical performances. Herein, we propose a straightforward strategy by coordinating zinc ions (Zn2+) with the -OH groups in LC, effectively disrupting the hydrogen bond network to form a porous structure, exposing more active sites to remove the solvation of water molecules and provide migration channels for active ions. Moreover, ionic concentration and conductivity of the electrolyte affect EDLC performances. LC-based GPEs are prepared through 1 M Li2SO4, 1 M H2SO4 and 6 M KOH aqueous electrolytes to assemble EDLCs for performance inspection and comparison. The results show that all acidic GPEs exhibit superior double-layer capacitance performance, with ZLG-15 having a high ionic conductivity (48.9 mS cm- 1), lower activation energy (1.32 KJ mol- 1), and retaining 90.7 % of its initial capacity after 30,000 cycles. Impressively, in both acidic and alkaline GPEs, the coordination bonds between Zn2+ and -OH groups are partly broken, allowing Zn2+ to participate in the migration process of the electrolyte ions.
引用
收藏
页数:17
相关论文
共 79 条
[1]  
Amaral M.M., Venancio R., Peterlevitz A.C., Zanin H., Recent advances on quasi solid-state electrolytes for supercapacitors, J Energy Chem, 67, pp. 697-717, (2022)
[2]  
Zhang Y., Lu W., Manaig D., Freschi D.J., Liu Y.L., Xie H.M., Liu J., Quasi-solid-state lithium-tellurium batteries based on flexible gel polymer electrolytes, J. Colloid Interface Sci., 605, pp. 547-555, (2022)
[3]  
Zhang Q.Q., Zhao L., Yang H.Z., Kong L.B., Ran F., Alkali-tolerant polymeric gel electrolyte membrane based on cross-linked carboxylated chitosan for supercapacitors, J Membrane Sci, 629, (2021)
[4]  
Jia R.L., He C.G., Li Q., Liu S.Y., Liao G.F., Renewable plant-derived lignin for electrochemical energy systems, Trends Biotechnol., 40, 12, pp. 1425-1438, (2022)
[5]  
Salanne M., Rotenberg B., Naoi K., Kaneko K., Taberna P.L., Grey C.P., Dunn B., Simon P., Efficient storage mechanisms for building better supercapacitors, Nat. Energy, 1, (2016)
[6]  
Hall P.J., Mirzaeian M., Fletcher S.I., Sillars F.B., Rennie A.J.R., Shitta-Bey G.O., Wilson G., Cruden A., Carter R., Energy storage in electrochemical capacitors: designing functional materials to improve performance, Energ. Environ. Sci., 3, 9, pp. 1238-1251, (2010)
[7]  
Reece R., Lekakou C., Smith P.A., A High-Performance Structural Supercapacitor, ACS Appl Mater Inter, 12, 23, pp. 25683-25692, (2020)
[8]  
Qing L.Y., Jiang J., Enabling High-Capacitance Supercapacitors by Polyelectrolyte Brushes, ACS Nano, 17, 17, pp. 17122-17130, (2023)
[9]  
Reenu S., Phor L., Kumar A., Chahal S., Electrode materials for supercapacitors: A comprehensive review of advancements and performance, J Energy Storage, 84, (2024)
[10]  
Chaudoy V., Van F.T., Deschamps M., Ghamouss F., Ionic liquids in a polyethene oxide cross-linked gel polymer as an electrolyte for electrical double layer capacitor, J. Power Sources, 342, pp. 872-878, (2017)