Molecular H2 as the Reducing Agent in Low-Temperature Oxide Reduction Using Calcium Hydride

被引:0
作者
Wang, Jiayue [1 ,2 ,3 ]
Yu, Yijun [1 ,2 ,3 ]
Abdelkawy, Ahmed [4 ]
Li, Jiarui [1 ]
Li, Jinlei [5 ]
Yang, Jing [4 ]
Ko, Eun Kyo [1 ,2 ]
Lee, Yonghun [1 ,3 ]
Thampy, Vivek [6 ]
Cui, Yi [1 ,2 ,5 ]
Todorova, Mira [4 ]
Neugebauer, Jorg [4 ]
Hwang, Harold Y. [1 ,2 ,3 ]
机构
[1] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA
[2] Stanford Univ, Geballe Lab Adv Mat, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[4] Max Planck Inst Sustainable Mat, Dept Computat Mat Design, D-40237 Dusseldorf, Germany
[5] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[6] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA
关键词
IRON-OXIDE; KINETICS; LAYER; MECHANISM; CONDUCTIVITY; ACTIVATION; HYDROGEN; LANIO2; ANION; FE2O3;
D O I
10.1021/jacs.4c17825
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Low-temperature synthesis is crucial for advancing sustainable manufacturing and accessing novel metastable phases. Metal hydrides have shown great potential in facilitating the reduction of oxides at low temperatures, yet the underlying mechanism-whether driven by H-, H2, or atomic H-remains unclear. In this study, we employ in situ electrical transport measurements and first-principles calculations to investigate the CaH2-driven reduction kinetics in epitaxial alpha-Fe2O3 thin films. Intriguingly, samples in direct contact with or separated from CaH2 powders exhibit similar apparent activation energies for H2 reduction, although direct contact significantly increases the reduction rate. These findings indicate that molecular H2 is the dominant reducing species in the low-temperature reduction of oxides using CaH2, with a key aspect of the hydrides' superior reducing power attributed to their ability to eliminate residual moisture. This work underscores the critical role of moisture control in enabling effective low-temperature oxide reduction for advanced material synthesis.
引用
收藏
页码:3032 / 3038
页数:7
相关论文
共 50 条
[1]   Electronic structure of possible nickelate analogs to the cuprates [J].
Anisimov, VI ;
Bukhvalov, D ;
Rice, TM .
PHYSICAL REVIEW B, 1999, 59 (12) :7901-7906
[2]   Thermodynamic and kinetic properties of calcium hydride [J].
Balakrishnan, Sruthy ;
Humphries, Terry D. ;
Paskevicius, Mark ;
Buckley, Craig E. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (78) :30479-30488
[3]   Destabilized Calcium Hydride as a Promising High-Temperature Thermal Battery [J].
Balakrishnan, Sruthy ;
Sofianos, M. Veronica ;
Paskevicius, Mark ;
Rowles, Matthew R. ;
Buckley, Craig E. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (32) :17512-17519
[4]   LaNiO2:: Synthesis and structural characterization [J].
Crespin, M ;
Isnard, O ;
Dubois, F ;
Choisnet, J ;
Odier, P .
JOURNAL OF SOLID STATE CHEMISTRY, 2005, 178 (04) :1326-1334
[5]   REDUCED FORMS OF LANIO3 PEROVSKITE .1. EVIDENCE FOR NEW PHASES - LA2NI2O5 AND LANIO2 [J].
CRESPIN, M ;
LEVITZ, P ;
GATINEAU, L .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS II, 1983, 79 :1181-1194
[6]   The Fate of Water in Hydrogen-Based Iron Oxide Reduction [J].
El-Zoka, Ayman A. ;
Stephenson, Leigh T. ;
Kim, Se-Ho ;
Gault, Baptiste ;
Raabe, Dierk .
ADVANCED SCIENCE, 2023, 10 (24)
[7]   Electrical and thermal percolation in two-phase materials: A perspective [J].
Forero-Sandoval, I. Y. ;
Franco-Bacca, A. P. ;
Cervantes-Alvarez, F. ;
Gomez-Heredia, C. L. ;
Ramirez-Rincon, J. A. ;
Ordonez-Miranda, J. ;
Alvarado-Gil, J. J. .
JOURNAL OF APPLIED PHYSICS, 2022, 131 (23)
[8]   An electrical conductivity relaxation study of oxygen transport in samarium doped ceria [J].
Gopal, Chirranjeevi Balaji ;
Haile, Sossina M. .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (07) :2405-2417
[9]   Kinetics and Mechanism of Calcium Hydride Synthesis of the Intermetallic Compound Cr2Ta [J].
Guryanov, A. M. ;
Yudin, S. N. ;
Kasimtsev, A. V. ;
Volodko, S. S. ;
Alimov, I. A. ;
Evstratov, E. V. .
INORGANIC MATERIALS, 2023, 59 (05) :463-474
[10]  
Hayward M., 2013, Comprehensive Inorganic Chemistry II (Second Edition) From Elements to Applications, P417, DOI [10.1016/B978-0-08-097774-4.00219-9, DOI 10.1016/B978-0-08-097774-4.00219-9]