Complete Homogeneous Symmetric Polynomials with Repeating Variables

被引:0
作者
Gonzalez-Serrano, Luis Angel [1 ]
Maximenko, Egor A. [1 ]
机构
[1] Inst Politecn Nacl, Escuela Super Fis & Matemat, Mexico City 07738, Mexico
关键词
complete homogeneous polynomials; confluent Vandermonde matrix; partial fractions decomposition;
D O I
10.3390/math13010034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider complete homogeneous symmetric polynomials evaluated for variables repeated with given multiplicities; in other words, we consider polynomials obtained from complete homogeneous polynomials by identifying some subsets of their variables. We represent such polynomials as linear combinations of the powers of the variables, where all exponents are equal to the degree of the original polynomial. We give two proofs for the proposed formulas: the first proof uses the decomposition of the generating function into partial fractions, and the second involves the inverse of the confluent Vandermonde matrix. We also discuss the computational feasibility of the proposed formulas.
引用
收藏
页数:27
相关论文
共 27 条
  • [1] Symmetric polynomials in the symplectic alphabet and the change of variables zj = xj + xj-1
    Alexandersson, Per
    Angel Gonzalez-Serrano, Luis
    Maximenko, Egor A.
    Alberto Moctezuma-Salazar, Mario
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (01)
  • [2] Alexandersson P, 2012, ELECTRON J COMB, V19
  • [3] Convex hulls of monomial curves, and a sparse positivstellensatz
    Averkov, Gennadiy
    Scheiderer, Claus
    [J]. MATHEMATICAL PROGRAMMING, 2025, 209 (1-2) : 113 - 131
  • [4] Brualdi R.A., 2009, INTRO COMBINATORICS
  • [5] Toeplitz minors
    Bump, D
    Diaconis, P
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2002, 97 (02) : 252 - 271
  • [6] Egge E S., 2019, An Introduction to Symmetric Functions and Their Combinatorics
  • [7] Erd?lyi A., 1956, ASYMPTOTIC EXPANSION
  • [8] Toeplitz minors and specializations of skew Schur polynomials
    Garcia-Garcia, David
    Tierz, Miguel
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 172
  • [9] Gomezllata Marmolejo E., 2022, Ph.D. Thesis
  • [10] González-Serrano LA, 2024, Arxiv, DOI [arXiv:2412.03086, 10.48550/arXiv.2412.03086 2412.03086, DOI 10.48550/ARXIV.2412.030862412.03086]