Examining the mass transport resistance of porous transport layers at the rib/channel scale in polymer electrolyte membrane water electrolyzers: Modeling and design

被引:0
作者
Garcia-Salaberri, Pablo A. [1 ]
Lang, Jack Todd [2 ]
Chang, Hung-Ming [2 ]
Firas, Nausir [2 ]
Shazhad, Hasan [3 ]
Zenyuk, Iryna V. [2 ]
机构
[1] Univ Rey Juan Carlos, Dept Chem & Environm Technol ESCET, C Tulipan S N, Mostoles 28933, Madrid, Spain
[2] Univ Calif Irvine, Natl Fuel Cell Res Ctr, Dept Chem & BioMol Engn, Irvine, CA 92697 USA
[3] Univ Carlos III Madrid, Dept Thermal & Fluids Engn, Avda Univ 30, Leganes 28911, Madrid, Spain
关键词
PTL; Design; Modeling; Mass transport; Pore network; PEMWE; GAS-DIFFUSION LAYERS; PERFORMANCE; TOMOGRAPHY; CELLS; FLOW; PTL;
D O I
10.1016/j.ijheatmasstransfer.2025.126889
中图分类号
O414.1 [热力学];
学科分类号
摘要
The porous transport layer (PTL) plays a relevant role in the efficiency of polymer electrolyte membrane water electrolyzers (PEMWE). Extraction of good design guidelines for this porous component is necessary for efficient water/oxygen transport. In this regard, numerical modeling provides a versatile tool to examine large parameter set and determine optimal PTL conditions to be verified experimentally. Here, a hybrid model is presented to analyze two-phase transport of oxygen and water in the anode PTL of a PEMWE. Oxygen capillary transport is modeled with a multi-cluster invasion-percolation algorithm, while water convective transport is modeled with a continuum formulation that incorporates the blockage of gas saturation. The model is validated against in-operando X-ray computed tomography data of the oxygen saturation distribution at the rib/channel scale. Subsequently, a comprehensive parametric analysis is presented, considering the following variables: ( i) PTL slenderness ratio, (ii) flow-field open area fraction, (iii) PTL isotropy, (iv) PTL average pore radius, and (v) PTL pore-size heterogeneity. Among other conclusions, the results show that the water transport resistance under the rib can lead to non-negligible mass transport losses at high current density. Water transport from the channel to the catalyst layer can be promoted by: (i) the use of PTLs with a slenderness ratio, defined as the PTL thickness to rib half-width ratio, around 0.5, (ii) the increase of the flow-field open area fraction, (iii) the design of highly anisotropic PTLs with a relatively large pore radius between rp similar to 10 - 40 mu m, and (iv) increasing the homogeneity of the PTL microstructure.
引用
收藏
页数:18
相关论文
共 78 条
[1]   Long-term performance of PEM water electrolysis cells with 3D printed electrodes and low catalyst loading [J].
Batalla, B. Sanchez ;
Laube, A. ;
Hofer, A. ;
Zallmann, S. ;
Korner, C. ;
Struckmann, T. ;
Bachmann, J. ;
Weidlich, C. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 59 :480-491
[2]   Factors influencing the performance and durability of polymer electrolyte membrane water electrolyzer: A review [J].
Bazarah, Ammar ;
Majlan, Edy Herianto ;
Husaini, Teuku ;
Zainoodin, A. M. ;
Alshami, Ibrahim ;
Goh, Jonathan ;
Masdar, Mohd Shahbudin .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (85) :35976-35989
[3]   Influence of Ionomer Content in IrO2/TiO2 Electrodes on PEM Water Electrolyzer Performance [J].
Bernt, Maximilian ;
Gasteiger, Hubert A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (11) :F3179-F3189
[4]   LBM studies at pore scale for graded anodic porous transport layer (PTL) of PEM water electrolyzer [J].
Bhaskaran, Supriya ;
Pandey, Divyansh ;
Surasani, Vikranth Kumar ;
Tsotsas, Evangelos ;
Vidakovic-Koch, Tanja ;
Vorhauer-Huget, Nicole .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (74) :31551-31565
[5]   Two-dimensional multi-physics modeling of porous transport layer in polymer electrolyte membrane electrolyzer for water splitting [J].
Chen, Qin ;
Wang, Yun ;
Yang, Fan ;
Xu, Hui .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (58) :32984-32994
[6]  
Cooper S. J., 2016, SoftwareX, V5, P203, DOI [10.1016/j.softx.2016.09.002, 10.1016/j.softx.2016.09.002]
[7]   Hydrogen's Big Shot [J].
Danilovic, Nemanja ;
Zenyuk, Iryna .
ELECTROCHEMICAL SOCIETY INTERFACE, 2021, 30 (04) :41-41
[8]   Unraveling two-phase transport in porous transport layer materials for polymer electrolyte water electrolysis [J].
De Angelis, Salvatore ;
Schuler, Tobias ;
Charalambous, Margarita A. ;
Marone, Federica ;
Schmidt, Thomas J. ;
Buchi, Felix N. .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (38) :22102-22113
[9]   A review of the porous transport layer in polymer electrolyte membrane water electrolysis [J].
Doan, Tuan Linh ;
Lee, Han Eol ;
Shah, Syed Shabbar Hassan ;
Kim, MinJoong ;
Kim, Chang-Hee ;
Cho, Hyun-Seok ;
Kim, Taekeun .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (10) :14207-14220
[10]   Preparation and Performance Evaluation of Microporous Transport Layers for Proton Exchange Membrane (PEM) Water Electrolyzer Anodes [J].
Ernst, Matthias F. ;
Meier, Vivian ;
Kornherr, Matthias ;
Gasteiger, Hubert A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (07)