Standard Lyndon Loop Words: Weighted Orders

被引:0
作者
Khomych, Severyn [1 ]
Korniichuk, Nazar [2 ]
Molokanov, Kostiantyn [3 ]
Tsymbaliuk, Alexander [4 ]
机构
[1] Univ Vienna, Dept Math, Vienna, Austria
[2] MIT, Dept Math, Cambridge, MA USA
[3] Tech Univ Berlin, Dept Math, Berlin, Germany
[4] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
CONVEX ORDERINGS; QUANTUM; BASES; ALGEBRAS;
D O I
10.1093/imrn/rnaf030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the study of standard Lyndon loop words from [16] to a more general class of orders on the underlying alphabet, as suggested in [16, Remark 3.15]. The main new ingredient is the exponent-tightness of these words, which also allows to generalize the construction of PBW bases of the untwisted quantum loop algebra $U_{q}(L{{\mathfrak{g}}})$ via the combinatorics of loop words.
引用
收藏
页数:32
相关论文
共 24 条
[21]   Quantum groups and quantum shuffles [J].
Rosso, M .
INVENTIONES MATHEMATICAE, 1998, 133 (02) :399-416
[22]  
Rosso M., Lyndon bases and the multiplicative formula for -matrices
[23]  
Samelson H., 1990, Notes on Lie algebras
[24]   A characterization of the Borel-like subalgebras of quantum enveloping algebras [J].
Schauenburg, P .
COMMUNICATIONS IN ALGEBRA, 1996, 24 (09) :2811-2823