Standard Lyndon Loop Words: Weighted Orders

被引:0
作者
Khomych, Severyn [1 ]
Korniichuk, Nazar [2 ]
Molokanov, Kostiantyn [3 ]
Tsymbaliuk, Alexander [4 ]
机构
[1] Univ Vienna, Dept Math, Vienna, Austria
[2] MIT, Dept Math, Cambridge, MA USA
[3] Tech Univ Berlin, Dept Math, Berlin, Germany
[4] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
CONVEX ORDERINGS; QUANTUM; BASES; ALGEBRAS;
D O I
10.1093/imrn/rnaf030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the study of standard Lyndon loop words from [16] to a more general class of orders on the underlying alphabet, as suggested in [16, Remark 3.15]. The main new ingredient is the exponent-tightness of these words, which also allows to generalize the construction of PBW bases of the untwisted quantum loop algebra $U_{q}(L{{\mathfrak{g}}})$ via the combinatorics of loop words.
引用
收藏
页数:32
相关论文
共 24 条
[1]   Affine Standard Lyndon Words: A-Type [J].
Avdieiev, Yehor ;
Tsymbaliuk, Alexander .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (21) :13488-13524
[2]   CONVEX BASES OF PBW TYPE FOR QUANTUM AFFINE ALGEBRAS [J].
BECK, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (01) :193-199
[3]   BRAID GROUP ACTION AND QUANTUM AFFINE ALGEBRAS [J].
BECK, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (03) :555-568
[4]   A BASIS OF TYPE POINCARE-BIRKHOFF-WITT FOR THE QUANTUM ALGEBRA OF (SL)OVER-CAP(2) [J].
DAMIANI, I .
JOURNAL OF ALGEBRA, 1993, 161 (02) :291-310
[5]   Drinfeld Realization of Affine Quantum Algebras: the Relations [J].
Damiani, Ilaria .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2012, 48 (03) :661-733
[6]   Weight functions and drinfeld currents [J].
Enriquez, B. ;
Khoroshkin, S. ;
Pakuliak, S. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 276 (03) :691-725
[7]  
Green JA, 1997, PROG MATH, V141, P273
[8]   Representations of quantum affinizations and fusion product [J].
Hernandez, D .
TRANSFORMATION GROUPS, 2005, 10 (02) :163-200
[9]  
Jantzen J.C., 1996, Lectures on Quantum Groups
[10]  
Kac V. G., 1990, Infinite-Dimensional Lie Algebras, DOI [10.1017/CBO9780511626234, DOI 10.1017/CBO9780511626234]