共 52 条
- [1] Wang Y., Han Y., Wang Y., Pan Q., Wang L., Sustainable Scheduling of Distributed Flow Shop Group: A Collaborative Multi-Objective Evolutionary Algorithm Driven by Indicators, IEEE Trans. Evol. Comput., (2023)
- [2] Qin H., Han Y., Chen Q., Wang L., Wang Y., Li J., Liu Y., Energy-Efficient Iterative Greedy Algorithm for the Distributed Hybrid Flow Shop Scheduling With Blocking Constraints, IEEE Trans. Emerg. Top. Comput. Intell., 7, pp. 1442-1457, (2023)
- [3] Han Y., Gong D., Jin Y., Pan Q.-K., Evolutionary multi-objective blocking lot-streaming flow shop scheduling with interval processing time, Appl. Soft Comput. J., 42, (2016)
- [4] Gong D., Han Y., Sun J., A novel hybrid multi-objective artificial bee colony algorithm for blocking lot-streaming flow shop scheduling problems, Knowl.-Based Syst, 148, pp. 115-130, (2018)
- [5] Qin H.-X., Han Y.-Y., Liu Y.-P., Li J.-Q., Pan Q.-K., Xue-Han, A collaborative iterative greedy algorithm for the scheduling of distributed heterogeneous hybrid flow shop with blocking constraints, Expert Syst. Appl., 201, (2022)
- [6] Qin H.-X., Han Y.-Y., Zhang B., Meng L.-L., Liu Y.-P., Pan Q.-K., Gong D.-W., An improved iterated greedy algorithm for the energy-efficient blocking hybrid flow shop scheduling problem, Swarm Evol. Comput., 69, (2022)
- [7] Gao L., Zhuang Z., Tao H., Chen Y., Stojanovic V., Non-lifted norm optimal iterative learning control for networked dynamical systems: A computationally efficient approach, J. Frankl. Inst., 361, (2024)
- [8] Wang Y., Han Y., Gong D., Li H., A review of intelligent optimization for group scheduling problems in cellular manufacturing, Front. Eng. Manag., 10, pp. 406-426, (2023)
- [9] Tao Y., Tao H., Zhuang Z., Stojanovic V., Paszke W., Quantized iterative learning control of communication-constrained systems with encoding and decoding mechanism, Trans. Inst. Meas. Control, 46, pp. 1943-1954, (2024)
- [10] Peng Z., Song X., Song S., Stojanovic V., Spatiotemporal fault estimation for switched nonlinear reaction–diffusion systems via adaptive iterative learning, Int. J. Adapt. Control Signal Process., 38, pp. 3473-3483, (2024)