Co/CoO hetero-nanoparticles incorporated into lignin-derived carbon nanofibers as a self-supported bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries

被引:0
|
作者
Wang, Yali [1 ]
Gan, Ruihui [2 ]
Shao, Xiaodong [4 ]
Dai, Binting [1 ]
Ma, Lin [1 ]
Yang, Jinzheng [1 ]
Shi, Jingli [2 ]
Zhang, Xiangwu [3 ]
Ma, Chang [2 ]
Jin, Zhanshuang [1 ]
机构
[1] Hebei North Univ, Coll Sci, Photovolta Conduct Film Engn Res Ctr Hebei Prov, Zhangjiakou 075000, Peoples R China
[2] Tiangong Univ, Tianjin Municipal Key Lab Adv Fiber & Energy Stora, Tianjin 300387, Peoples R China
[3] North Carolina State Univ, Wilson Coll Text, Dept Text Engn Chem & Sci, Fiber & Polymer Sci Program, Raleigh, NC 27695 USA
[4] Sungkyunkwan Univ, Dept Chem, Suwon 16419, South Korea
关键词
CoO/Co hetero-nanoparticles; Lignin; Carbon nanofibers; Bifunctional oxygen electrocatalysts; Zn-air batteries; POROUS CARBON; HIGHLY EFFICIENT; NANOTUBES; CATALYSTS; SITES; FE;
D O I
10.1016/j.jcis.2024.12.035
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The large-scale application of rechargeable Zn-air batteries (ZABs) necessitates the development of high- efficiency and cost-effective bifunctional electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Herein, the density functional theory calculations were performed to reveal the charge redistribution induced by the Co/CoO heterojunction integrating with N-doped carbon, which could optimize the d-band center, thereby accelerating O2 transformed into OOH* in the ORR and the conversion of O* into OOH* in OER. Guided by theoretical calculations, Co/CoO hetero-nanoparticles-decorated lignin-derived N-doped porous carbon nanofibers (Co-LCFs-800) were synthesized to use as an advanced self-supported bifunctional oxygen electrocatalyst. Consequently, Co-LCFs-800 shows a half-wave potential of 0.834 V in ORR and an overpotential of 354 mV at 10 mA cm- 2 in OER. The Co-LCFs-800-based liquid ZABs afford an admirable performance with a large specific capacity of 780.8 mAh g- 1, and the Co-LCFs-800-based solid-state ZABs exhibit satisfactory mechanical flexibility and cycling stability. The results suggest that the integration of hetero-nanoparticles into carbon nanofibers holds promise for oxygen cathode in ZABs.
引用
收藏
页码:934 / 945
页数:12
相关论文
共 50 条
  • [1] Co3O4 nanoparticles supported on N-doped electrospinning carbon nanofibers as an efficient and bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries
    Qiu, Liuzhe
    Han, Xiaopeng
    Lu, Qi
    Zhao, Jun
    Wang, Yang
    Chen, Zelin
    Zhong, Cheng
    Hu, Wenbin
    Deng, Yida
    INORGANIC CHEMISTRY FRONTIERS, 2019, 6 (12): : 3554 - 3561
  • [2] 3D carbon framework-supported CoNi nanoparticles as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries
    Wan, Wenjun
    Liu, Xijun
    Li, Huaiyu
    Peng, Xianyun
    Xi, Desheng
    Luo, Jun
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 240 : 193 - 200
  • [3] Bamboo fiber-derived bifunctional electrocatalyst for rechargeable Zn-air batteries
    Yu, Jian
    Chen, Zehong
    Zhong, Linxin
    Yang, Wu
    Li, Tingzhen
    Huang, Yongfa
    Peng, Xinwen
    IONICS, 2023, 29 (08) : 3193 - 3202
  • [4] Surface reconstruction of SrCoO2.52 nanofibers as bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries
    Guo, Xin
    Tao, Youkun
    Fang, Yusheng
    Ren, Hong
    Long, Xinyi
    Zhang, Xiang
    Zhang, Wei
    Shao, Jing
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (83) : 32385 - 32395
  • [5] Bamboo fiber–derived bifunctional electrocatalyst for rechargeable Zn-air batteries
    Jian Yu
    Zehong Chen
    Linxin Zhong
    Wu Yang
    Tingzhen Li
    Yongfa Huang
    Xinwen Peng
    Ionics, 2023, 29 : 3193 - 3202
  • [6] Efficient MnO and Co nanoparticles coated with N-doped carbon as a bifunctional electrocatalyst for rechargeable Zn-air batteries
    Peng, Lijuan
    Peng, Xiaomin
    Zhu, Zhaogen
    Xu, Qianqun
    Luo, Kaifen
    Ni, Zhaotong
    Yuan, Dingsheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (50) : 19126 - 19136
  • [7] A Triphasic Bifunctional Oxygen Electrocatalyst with Tunable and Synergetic Interfacial Structure for Rechargeable Zn-Air Batteries
    Zhu, Jianbing
    Xiao, Meiling
    Li, Gaoran
    Li, Shuang
    Zhang, Jing
    Liu, Guihua
    Ma, Lu
    Wu, Tianpin
    Lu, Jun
    Yu, Aiping
    Su, Dong
    Jin, Huile
    Wang, Shun
    Chen, Zhongwei
    ADVANCED ENERGY MATERIALS, 2020, 10 (04)
  • [8] Hierarchical cobalt-nitrogen-doped carbon composite as efficiently bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries
    Fu, Tiantian
    Li, Guijun
    Xiang, Yang
    Tang, Yibo
    Cai, Dongping
    Jiang, Shuangshi
    Xue, Yu
    Xiong, Zhongping
    Si, Yujun
    Guo, Chaozhong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 878
  • [9] Graphitic carbon layer-encapsulated Co nanoparticles embedded on porous carbonized wood as a self-supported chainmail oxygen electrode for rechargeable Zn-air batteries
    Li, Wenjing
    Wang, Fang
    Zhang, Zhengguo
    Min, Shixiong
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2022, 317
  • [10] Iron-chelated hydrogel-derived bifunctional oxygen electrocatalyst for high-performance rechargeable Zn-air batteries
    Meng, Fanlu
    Zhong, Haixia
    Yan, Junmin
    Zhang, Xinbo
    NANO RESEARCH, 2017, 10 (12) : 4436 - 4447