Effective Nucleation Size for Ice Crystallization

被引:0
作者
Li, Maodong [1 ]
Huang, Yupeng [2 ]
Xia, Yijie [1 ,2 ]
Chen, Dechin [1 ]
Fan, Cheng [1 ,2 ]
Yang, Lijiang [2 ]
Gao, Yi Qin [1 ,2 ]
Yang, Yi Isaac [1 ]
机构
[1] Inst Syst & Phys Biol, Shenzhen Bay Lab, Shenzhen 518132, Peoples R China
[2] Peking Univ, Coll Chem & Mol Engn, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
STACKING DISORDER; DYNAMICS; ORDER;
D O I
10.1021/acs.jctc.4c01588
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite the apparent simplicity of water molecules, the kinetics of ice nucleation under natural conditions can be surprisingly intricate. Previous studies have yielded critical nucleation sizes that vary widely due to differences in experimental and computational approaches. In our investigation, we employed all-atom molecular dynamics simulations to explore spontaneously grown and ideal ice nuclei, revealing significant disparities in their kinetics. Notably, nucleation defects challenge the applicability of the classical nucleation theory (CNT) to spontaneously grown ice nuclei. To address this, we propose a generalized nucleation theory that effectively describes the kinetics of ice crystal nucleation across diverse conditions. The kinetics of ice nuclei, as characterized by the "corrected" critical nucleus size, follow a linear law akin to that assumed by CNT. This generalized nucleation theory also provides insights for studying the kinetics of other crystalline materials.
引用
收藏
页码:1990 / 1996
页数:7
相关论文
共 41 条
  • [1] Del Rosso L., Celli M., Grazzi F., Catti M., Hansen T.C., Fortes A.D., Ulivi L., Cubic ice Ic without stacking defects obtained from ice XVII, Nat. Mater., 19, 6, pp. 663-668, (2020)
  • [2] Bartels-Rausch T., Bergeron V., Cartwright J.H.E., Escribano R., Finney J.L., Grothe H., Gutierrez P.J., Haapala J., Kuhs W.F., Pettersson J.B.C., Price S.D., Sainz-Diaz C.I., Stokes D.J., Strazzulla G., Thomson E.S., Trinks H., Uras-Aytemiz N., Ice structures, patterns, and processes: A view across the icefields, Rev. Mod. Phys., 84, 2, pp. 885-944, (2012)
  • [3] Quigley D., Communication: Thermodynamics of stacking disorder in ice nuclei, J. Chem. Phys, 141, 12, (2014)
  • [4] Murray B.J., Knopf D.A., Bertram A.K., The formation of cubic ice under conditions relevant to Earth’s atmosphere, Nature, 434, 7030, pp. 202-205, (2005)
  • [5] Reinhardt A., Doye J.P.K., Free energy landscapes for homogeneous nucleation of ice for a monatomic water model, J. Chem. Phys., 136, 5, (2012)
  • [6] Baker J.M., Dore J.C., Behrens P., Nucleation of Ice in Confined Geometry, J. Phys. Chem. B, 101, 32, pp. 6226-6229, (1997)
  • [7] Falenty A., Kuhs W.F., Self-Preservation” of CO2 Gas Hydrates─Surface Microstructure and Ice Perfection, J. Phys. Chem. B, 113, 49, pp. 15975-15988, (2009)
  • [8] Sellberg J.A., Huang C., McQueen T.A., Loh N.D., Laksmono H., Schlesinger D., Sierra R.G., Nordlund D., Hampton C.Y., Starodub D., DePonte D.P., Beye M., Chen C., Martin A.V., Barty A., Wikfeldt K.T., Weiss T.M., Caronna C., Feldkamp J., Skinner L.B., Seibert M.M., Messerschmidt M., Williams G.J., Boutet S., Pettersson L.G.M., Bogan M.J., Nilsson A., Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature, Nature, 510, 7505, pp. 381-384, (2014)
  • [9] Pipolo S., Salanne M., Ferlat G., Klotz S., Saitta A.M., Pietrucci F., Navigating at Will on the Water Phase Diagram, Phys. Rev. Lett., 119, 24, (2017)
  • [10] Haji-Akbari A., Debenedetti P.G., Direct calculation of ice homogeneous nucleation rate for a molecular model of water, Proc. Natl. Acad. Sci. U. S. A., 112, 34, pp. 10582-10588, (2015)