Comparison of Machine Learning Algorithms Identifying Children at Increased Risk of Out-of-Home Placement: Development and Practical Considerations
被引:0
|
作者:
Gorham, Tyler J.
论文数: 0引用数: 0
h-index: 0
机构:
Nationwide Childrens Hosp, IT Res & Innovat, Abigail Wexner Res Inst, Columbus, OH 43205 USANationwide Childrens Hosp, IT Res & Innovat, Abigail Wexner Res Inst, Columbus, OH 43205 USA
Gorham, Tyler J.
[1
]
Hardy, Rose Y.
论文数: 0引用数: 0
h-index: 0
机构:
Nationwide Childrens Hosp, Ctr Child Hlth Equ & Outcomes Res, Abigail Wexner Res Inst, Columbus, OH USANationwide Childrens Hosp, IT Res & Innovat, Abigail Wexner Res Inst, Columbus, OH 43205 USA
Hardy, Rose Y.
[2
]
Ciccone, David
论文数: 0引用数: 0
h-index: 0
机构:
Nationwide Childrens Hosp, Ctr Child Hlth Equ & Outcomes Res, Abigail Wexner Res Inst, Columbus, OH USANationwide Childrens Hosp, IT Res & Innovat, Abigail Wexner Res Inst, Columbus, OH 43205 USA
Ciccone, David
[2
]
Chisolm, Deena J.
论文数: 0引用数: 0
h-index: 0
机构:
Nationwide Childrens Hosp, Ctr Child Hlth Equ & Outcomes Res, Abigail Wexner Res Inst, Columbus, OH USANationwide Childrens Hosp, IT Res & Innovat, Abigail Wexner Res Inst, Columbus, OH 43205 USA
Chisolm, Deena J.
[2
]
机构:
[1] Nationwide Childrens Hosp, IT Res & Innovat, Abigail Wexner Res Inst, Columbus, OH 43205 USA
[2] Nationwide Childrens Hosp, Ctr Child Hlth Equ & Outcomes Res, Abigail Wexner Res Inst, Columbus, OH USA
ObjectiveTo develop a machine learning (ML) algorithm capable of identifying children at risk of out-of-home placement among a Medicaid-insured population. Study Setting and DesignThe study population includes children enrolled in a Medicaid accountable care organization between 2018 and 2022 in two nonurban Ohio counties served by the Centers for Medicare and Medicaid Services-funded Integrated Care for Kids Model. Using a retrospective cohort, we developed and compared a set of ML algorithms to identify children at risk of out-of-home placement within one year. ML algorithms tested include least absolute shrinkage and selection operator (LASSO)-regularized logistic regression and eXtreme gradient-boosted trees (XGBoost). We compared both modeling approaches with and without race as a candidate predictor. Performance metrics included the area under the receiver operating characteristic curve (AUROC) and the corrected partial AUROC at specificities >= 90% (pAUROC90). Algorithmic bias was tested by comparing pAUROC90 across each model between Black and White children. Study Setting and Design The study population includes children enrolled in a Medicaid accountable care organization between 2018 and 2022 in two nonurban Ohio counties served by the Centers for Medicare and Medicaid Services-funded Integrated Care for Kids Model. Using a retrospective cohort, we developed and compared a set of ML algorithms to identify children at risk of out-of-home placement within one year. ML algorithms tested include least absolute shrinkage and selection operator (LASSO)-regularized logistic regression and eXtreme gradient-boosted trees (XGBoost). We compared both modeling approaches with and without race as a candidate predictor. Performance metrics included the area under the receiver operating characteristic curve (AUROC) and the corrected partial AUROC at specificities >= 90% (pAUROC(90)). Algorithmic bias was tested by comparing pAUROC(90) across each model between Black and White children. Data Sources and Analytic Sample The modeling dataset was comprised of Medicaid claims and patient demographics data from Partners For Kids, a pediatric accountable care organization. Principal Findings Overall, XGBoost models outperformed LASSO models. When race was included in the model, XGBoost had an AUROC of 0.78 (95% confidence interval [CI]: 0.77-0.79) while the LASSO model had an AUROC of 0.75 (95% CI: 0.74-0.77). When race was excluded from the model, XGBoost had an AUROC of 0.76 (95% CI: 0.74-0.77) while LASSO had an AUROC of 0.73 (95% CI: 0.72-0.74). Conclusions The more complex XGBoost outperformed the simpler LASSO in predicting out-of-home placement and had less evidence of racial bias. This study highlights the complexities of developing predictive models in systems with known racial disparities and illustrates what can be accomplished when ML developers and policy leaders collaborate to maximize data to meet the needs of children and families.
机构:
Univ Illinois, Sch Social Work, Children & Family Res Ctr, Urbana, IL 61801 USAUniv Illinois, Sch Social Work, Children & Family Res Ctr, Urbana, IL 61801 USA
机构:
Zunyi Med Univ, Affiliated Hosp, Zunyi 563099, Peoples R ChinaZunyi Med Univ, Affiliated Hosp, Zunyi 563099, Peoples R China
Long, Wenyan
Wang, Xiaohua
论文数: 0引用数: 0
h-index: 0
机构:
Zunyi Med Univ, Affiliated Hosp, Zunyi 563099, Peoples R China
ZunyiMed Univ, Sch Med Informat Engn, Zunyi 563006, Peoples R ChinaZunyi Med Univ, Affiliated Hosp, Zunyi 563099, Peoples R China
Wang, Xiaohua
Lu, Liqin
论文数: 0引用数: 0
h-index: 0
机构:
Zunyi Med Univ, Affiliated Hosp, Zunyi 563099, Peoples R ChinaZunyi Med Univ, Affiliated Hosp, Zunyi 563099, Peoples R China
Lu, Liqin
Wei, Zhengang
论文数: 0引用数: 0
h-index: 0
机构:
Zunyi Med Univ, Affiliated Hosp, Zunyi 563099, Peoples R ChinaZunyi Med Univ, Affiliated Hosp, Zunyi 563099, Peoples R China
Wei, Zhengang
Yang, Jijin
论文数: 0引用数: 0
h-index: 0
机构:
Zunyi Med Univ, Affiliated Hosp, Zunyi 563099, Peoples R ChinaZunyi Med Univ, Affiliated Hosp, Zunyi 563099, Peoples R China
机构:
Inst Business Management, Karachi, Pakistan
Univ Kuala Lumpur, Malaysian Inst Informat Technol, Kuala Lumpur, MalaysiaInst Business Management, Karachi, Pakistan
Iftikhar, Asim
Musa, Shahrulniza
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kuala Lumpur, Kuala Lumpur, MalaysiaInst Business Management, Karachi, Pakistan
Musa, Shahrulniza
Alam, Muhammad Mansoor
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kuala Lumpur, Malaysian Inst Informat Technol, Kuala Lumpur, Malaysia
Riphah Int Univ, Islamabad, Pakistan
Multimedia Univ, Cyberjaya, Malaysia
Univ Technol Sydney, Sch Comp Sci, Sydney, NSW, AustraliaInst Business Management, Karachi, Pakistan
Alam, Muhammad Mansoor
Ahmed, Rizwan
论文数: 0引用数: 0
h-index: 0
机构:
Inst Business Management, Karachi, PakistanInst Business Management, Karachi, Pakistan
Ahmed, Rizwan
Su'ud, Mazliham Mohd
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kuala Lumpur, Kuala Lumpur, MalaysiaInst Business Management, Karachi, Pakistan
Su'ud, Mazliham Mohd
Khan, Laiq Muhammad
论文数: 0引用数: 0
h-index: 0
机构:
Inst Business Management, Karachi, PakistanInst Business Management, Karachi, Pakistan
机构:
Fdn IRCCS Casa Sollievo Sofferenza, Dept Med Sci, I-71013 San Giovanni Rotondo, ItalyFdn IRCCS Casa Sollievo Sofferenza, Dept Med Sci, I-71013 San Giovanni Rotondo, Italy
Mirijello, Antonio
Fontana, Andrea
论文数: 0引用数: 0
h-index: 0
机构:
Fdn IRCCS Casa Sollievo Sofferenza, Unit Biostat, I-71013 San Giovanni Rotondo, ItalyFdn IRCCS Casa Sollievo Sofferenza, Dept Med Sci, I-71013 San Giovanni Rotondo, Italy
Fontana, Andrea
Greco, Antonio Pio
论文数: 0引用数: 0
h-index: 0
机构:
Fdn IRCCS Casa Sollievo Sofferenza, Dept Med Sci, I-71013 San Giovanni Rotondo, ItalyFdn IRCCS Casa Sollievo Sofferenza, Dept Med Sci, I-71013 San Giovanni Rotondo, Italy
Greco, Antonio Pio
Tosoni, Alberto
论文数: 0引用数: 0
h-index: 0
机构:
Fdn Policlin Univ A Gemelli IRCCS, Dept Internal Med & Gastroenterol, I-00168 Rome, ItalyFdn IRCCS Casa Sollievo Sofferenza, Dept Med Sci, I-71013 San Giovanni Rotondo, Italy
Tosoni, Alberto
D'Agruma, Angelo
论文数: 0引用数: 0
h-index: 0
机构:
Fdn IRCCS Casa Sollievo Sofferenza, Dept Med Sci, I-71013 San Giovanni Rotondo, ItalyFdn IRCCS Casa Sollievo Sofferenza, Dept Med Sci, I-71013 San Giovanni Rotondo, Italy
D'Agruma, Angelo
Labonia, Maria
论文数: 0引用数: 0
h-index: 0
机构:
Fdn IRCCS Casa Sollievo Sofferenza, Unit Microbiol, I-71013 San Giovanni Rotondo, ItalyFdn IRCCS Casa Sollievo Sofferenza, Dept Med Sci, I-71013 San Giovanni Rotondo, Italy
Labonia, Maria
Copetti, Massimiliano
论文数: 0引用数: 0
h-index: 0
机构:
Fdn IRCCS Casa Sollievo Sofferenza, Unit Biostat, I-71013 San Giovanni Rotondo, ItalyFdn IRCCS Casa Sollievo Sofferenza, Dept Med Sci, I-71013 San Giovanni Rotondo, Italy
Copetti, Massimiliano
Piscitelli, Pamela
论文数: 0引用数: 0
h-index: 0
机构:
Fdn IRCCS Casa Sollievo Sofferenza, Dept Med Sci, I-71013 San Giovanni Rotondo, ItalyFdn IRCCS Casa Sollievo Sofferenza, Dept Med Sci, I-71013 San Giovanni Rotondo, Italy
Piscitelli, Pamela
De Cosmo, Salvatore
论文数: 0引用数: 0
h-index: 0
机构:
Fdn IRCCS Casa Sollievo Sofferenza, Dept Med Sci, I-71013 San Giovanni Rotondo, ItalyFdn IRCCS Casa Sollievo Sofferenza, Dept Med Sci, I-71013 San Giovanni Rotondo, Italy