Generating accurate sex estimation from hand X-ray images using AI deep-learning techniques: A study of limited bone regions

被引:0
作者
Achararit, Paniti [1 ]
Bongkaew, Haruethai [1 ]
Chobpenthai, Thanapon [1 ]
Nonthasaen, Pawaree [1 ]
机构
[1] Chulabhorn Royal Acad, Princess Srisavangavadhana Coll Med, 906 Kampangpetch Rd, Bangkok 10210, Thailand
关键词
Sex estimation; Convolutional neural networks; Hand X-rays; Skeletal radiology analysis; AGE;
D O I
10.1016/j.legalmed.2025.102612
中图分类号
DF [法律]; D9 [法律]; R [医药、卫生];
学科分类号
0301 ; 10 ;
摘要
Hand bone structure provides valuable features for sex estimation. This research introduces a novel approach using Artificial Intelligence (AI), specifically Convolutional Neural Networks (CNNs), to classify sex from hand Xray images, focusing on the diagnostic potential of specific bone regions. We assess CNN performance on different hand skeleton areas, utilize Score-CAM to understand sex-discriminating features, and evaluate advanced CNN architectures. While the Xception model achieved the highest overall accuracy of 83.5% using complete hand X-rays, the InceptionResNetV2 model demonstrated remarkable efficiency by achieving 81.68% accuracy using only the proximal phalanx and metacarpal bones, maintaining a comparable AUC-ROC score of 0.92. Metacarpals of the first and second fingers were identified as key for differentiation. This approach demonstrates the power of AI in skeletal analysis and represents a significant step towards deployable AI tools for forensic and medical sex identification.
引用
收藏
页数:8
相关论文
共 47 条
  • [21] Jain S., 2021, Yearbook Med. Inform., V30, P070
  • [22] Karakostis Fotios Alexandros, 2015, Papers on Anthropology University of Tartu, V24, P37, DOI 10.12697/poa.2015.24.2.04
  • [23] Determination of sex from the metacarpals in a Thai population
    Khanpetch, Pongsak
    Prasitwattanseree, Sukon
    Case, D. Troy
    Mahakkanukrauh, Pasuk
    [J]. FORENSIC SCIENCE INTERNATIONAL, 2012, 217 (1-3) : 229.e1 - 229.e8
  • [24] Kingma D.P., 2015, ACS SYM SER, DOI 10.48550/arXiv.1412.6980
  • [25] Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis
    Larrazabal, Agostina J.
    Nieto, Nicolas
    Peterson, Victoria
    Milone, Diego H.
    Ferrante, Enzo
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (23) : 12592 - 12594
  • [26] Deep learning
    LeCun, Yann
    Bengio, Yoshua
    Hinton, Geoffrey
    [J]. NATURE, 2015, 521 (7553) : 436 - 444
  • [27] Gender differences among Swedish COPD patients: results from the ARCTIC, a real-world retrospective cohort study
    Lisspers, Karin
    Larsson, Kjell
    Janson, Christer
    Stallberg, Bjorn
    Tsiligianni, Ioanna
    Gutzwiller, Florian S.
    Mezzi, Karen
    Bjerregaard, Bine Kjoeller
    Jorgensen, Leif
    Johansson, Gunnar
    [J]. NPJ PRIMARY CARE RESPIRATORY MEDICINE, 2019, 29 (1)
  • [28] Determination of sex from the proximal hand phalanges in a Thai population
    Mahakkanukrauh, Pasuk
    Khanpetch, Pongsak
    Prasitwattanseree, Sukon
    Case, D. Troy
    [J]. FORENSIC SCIENCE INTERNATIONAL, 2013, 226 (1-3) : 208 - 215
  • [29] Sex determination using metacarpal biometric data from the Athens Collection
    Manolis, Sotiris K.
    Eliopoulos, Constantine
    Koilias, Christos G.
    Fox, Sherry C.
    [J]. FORENSIC SCIENCE INTERNATIONAL, 2009, 193 (1-3) : 130.e1 - 130.e6
  • [30] Nishiyama K., 2009, J. Bone Miner. Res.