BioSAM: Generating SAM Prompts From Superpixel Graph for Biological Instance Segmentation

被引:0
作者
Cai, Miaomiao [1 ,2 ]
Liu, Xiaoyu [1 ,2 ]
Xiong, Zhiwei [1 ,2 ]
Chen, Xuejin [1 ,2 ]
机构
[1] Univ Sci & Technol China, MoE Key Lab Brain Inspired Intelligent Percept & C, Hefei 230088, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Anhui Prov Key Lab Biomed Imaging & Intelligent Pr, Hefei 230088, Peoples R China
基金
中国国家自然科学基金;
关键词
Biological information theory; Instance segmentation; Image segmentation; Feature extraction; Morphology; Biomedical imaging; Biological system modeling; Graph neural networks; Decoding; Accuracy; Biological Instance Segmentation; segment anything; prompt generation; superpixel;
D O I
10.1109/JBHI.2024.3474706
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Proposal-free instance segmentation methods have significantly advanced the field of biological image analysis. Recently, the Segment Anything Model (SAM) has shown an extraordinary ability to handle challenging instance boundaries. However, directly applying SAM to biological images that contain instances with complex morphologies and dense distributions fails to yield satisfactory results. In this work, we propose BioSAM, a new biological instance segmentation framework generating SAM prompts from a superpixel graph. Specifically, to avoid over-merging, we first generate sufficient superpixels as graph nodes and construct an initialized graph. We then generate initial prompts from each superpixel and aggregate them through a graph neural network (GNN) by predicting the relationship of superpixels to avoid over-segmentation. We employ the SAM encoder embeddings and the SAM-assisted superpixel similarity as new features for the graph to enhance its discrimination capability. With the graph-based prompt aggregation, we utilize the aggregated prompts in SAM to refine the segmentation and generate more accurate instance boundaries. Comprehensive experiments on four representative biological datasets demonstrate that our proposed method outperforms state-of-the-art methods.
引用
收藏
页码:273 / 284
页数:12
相关论文
共 65 条
  • [1] SLIC Superpixels Compared to State-of-the-Art Superpixel Methods
    Achanta, Radhakrishna
    Shaji, Appu
    Smith, Kevin
    Lucchi, Aurelien
    Fua, Pascal
    Suesstrunk, Sabine
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) : 2274 - 2281
  • [2] Crowdsourcing the creation of image segmentation algorithms for connectomics
    Arganda-Carreras, Ignacio
    Turaga, Srinivas C.
    Berger, Daniel P.
    Ciresan, Dan
    Giusti, Alessandro
    Gambardella, Luca M.
    Schmidhuber, Juergen
    Laptev, Dmitry
    Dwivedi, Sarvesh
    Buhmann, Joachim M.
    Liu, Ting
    Seyedhosseini, Mojtaba
    Tasdizen, Tolga
    Kamentsky, Lee
    Burget, Radim
    Uher, Vaclav
    Tan, Xiao
    Sun, Changming
    Pham, Tuan D.
    Bas, Erhan
    Uzunbas, Mustafa G.
    Cardona, Albert
    Schindelin, Johannes
    Seung, H. Sebastian
    [J]. FRONTIERS IN NEUROANATOMY, 2015, 9 : 1 - 13
  • [3] Multicut brings automated neurite segmenation closer to human performance
    Beier, Thorsten
    Pape, Constantin
    Rahaman, Nasim
    Prange, Limo
    Berg, Stuart
    Bock, Davi D.
    Cardona, Albert
    Knott, Graham W.
    Plaza, Stephen M.
    Scheffer, Louis K.
    Koethe, Ullrich
    Kreshuk, Anna
    Hamprecht, Fred A.
    [J]. NATURE METHODS, 2017, 14 (02) : 101 - 102
  • [4] Beucher S., 1993, TRANSFORMATION, V34, P433, DOI [10.1201/9781482277234-12, DOI 10.1201/9781482277234-12]
  • [5] YOLACT Real-time Instance Segmentation
    Bolya, Daniel
    Zhou, Chong
    Xiao, Fanyi
    Lee, Yong Jae
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 9156 - 9165
  • [6] Boykov YY, 2001, EIGHTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOL I, PROCEEDINGS, P105, DOI 10.1109/ICCV.2001.937505
  • [7] Cascade R-CNN: Delving into High Quality Object Detection
    Cai, Zhaowei
    Vasconcelos, Nuno
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 6154 - 6162
  • [8] Hybrid Task Cascade for Instance Segmentation
    Chen, Kai
    Pang, Jiangmiao
    Wang, Jiaqi
    Xiong, Yu
    Li, Xiaoxiao
    Sun, Shuyang
    Feng, Wansen
    Liu, Ziwei
    Shi, Jianping
    Ouyang, Wanli
    Loy, Chen Change
    Lin, Dahua
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 4969 - 4978
  • [9] RSPrompter: Learning to Prompt for Remote Sensing Instance Segmentation Based on Visual Foundation Model
    Chen, Keyan
    Liu, Chenyang
    Chen, Hao
    Zhang, Haotian
    Li, Wenyuan
    Zou, Zhengxia
    Shi, Zhenwei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 17
  • [10] LEARNING MULTISCALE CONSISTENCY FOR SELF-SUPERVISED ELECTRON MICROSCOPY INSTANCE SEGMENTATION
    Chen, Yinda
    Huang, Wei
    Liu, Xiaoyu
    Deng, Shiyu
    Chen, Qi
    Xiong, Zhiwei
    [J]. 2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 1566 - 1570