An adversarial diverse deep ensemble approach for surrogate-based traffic signal optimization

被引:0
|
作者
Tang, Zhixian [1 ]
Wang, Ruoheng [1 ]
Chung, Edward [1 ]
Gu, Weihua [1 ]
Zhu, Hong [2 ]
机构
[1] Hong Kong Polytech Univ, Dept Elect & Elect Engn, Hong Kong, Peoples R China
[2] Tongji Univ, Coll Transportat Engn, Shanghai, Peoples R China
关键词
NEURAL-NETWORK MODEL; BAYESIAN OPTIMIZATION; ALGORITHM;
D O I
10.1111/mice.13354
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Surrogate-based traffic signal optimization (TSO) is a computationally efficient alternative to simulation-based TSO. By replacing the simulation-based objective function, a surrogate model can quickly identify solutions by searching for extreme points on its response surface. As a popular surrogate model, the ensemble of multiple diverse deep learning models can approximate complicated systems with a strong generalizability. However, existing ensemble methods barely focus on strengthening the prediction of extreme points, which we found can be realized by further diversifying base learners in the ensemble. The study proposes an adversarial diverse ensemble (ADE) method for online TSO with limited computational resources, comprising two stages: In the offline stage, base extractors are diversified with unlabeled data by a designed adversarial diversity training algorithm; in the online stage, base predictors are trained in parallel with limited labeled data, and the ensemble then serves as the surrogate model to search for solutions iteratively for TSO. First, it is demonstrated that the prediction accuracy on extreme points, and associated solution quality, can be constantly improved with base learners' diversity enhanced by ADE. Case studies of TSO conducted on a four-intersection arterial further demonstrate the superior solution quality and computational efficiency of the ADE surrogate model in a wide range of traffic scenarios. Moreover, a large-scale online TSO experiment under dynamic traffic demand proves ADE's effectiveness in practical applications.
引用
收藏
页码:632 / 657
页数:26
相关论文
共 50 条
  • [1] An Ensemble Surrogate-Based Framework for Expensive Multiobjective Evolutionary Optimization
    Lin, Qiuzhen
    Wu, Xunfeng
    Ma, Lijia
    Li, Jianqiang
    Gong, Maoguo
    Coello, Carlos A. Coello
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2022, 26 (04) : 631 - 645
  • [2] A Hybrid Surrogate-Based Approach for Evolutionary Multi-Objective Optimization
    Rosales-Perez, Alejandro
    Coello Coello, Carlos A.
    Gonzalez, Jesus A.
    Reyes-Garcia, Carlos A.
    Jair Escalante, Hugo
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 2548 - 2555
  • [3] Surrogate-based optimization of a periodic rescheduling algorithm
    Ikonen, Teemu J.
    Heljanko, Keijo
    Harjunkoski, Iiro
    AICHE JOURNAL, 2022, 68 (06)
  • [4] An Evolutionary Strategy for Surrogate-Based Multiobjective Optimization
    Pilat, Martin
    Neruda, Roman
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [5] Surrogate-based optimization for overflow spillway design
    Oukaili, Fatna
    Bercovitz, Yvan
    Goeury, Cedric
    Zaoui, Fabrice
    Le Coupanec, Erwan
    Abderrezzak, Kamal El Kadi
    LHB-HYDROSCIENCE JOURNAL, 2021, 107 (01)
  • [6] Managing network congestion with link-based incentives: A surrogate-based optimization approach
    Fu, Quanlu
    Wu, Jiyan
    Wu, Xuemian
    Sun, Jian
    Tian, Ye
    TRANSPORTATION RESEARCH PART A-POLICY AND PRACTICE, 2024, 182
  • [7] Surrogate-Based Infill Optimization Applied to Electromagnetic Problems
    Couckuyt, I.
    Declercq, F.
    Dhaene, T.
    Rogier, H.
    Knockaert, L.
    INTERNATIONAL JOURNAL OF RF AND MICROWAVE COMPUTER-AIDED ENGINEERING, 2010, 20 (05) : 492 - 501
  • [8] A local surrogate-based parallel optimization for analog circuits
    Du, Sichun
    Liu, Haiyang
    Yin, Hongxia
    Yu, Fei
    Li, Jinxin
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2021, 134
  • [9] Surrogate-based automated hyperparameter optimization for expensive automotive crashworthiness optimization
    Long, Fu Xing
    van Stein, Niki
    Frenzel, Moritz
    Krause, Peter
    Gitterle, Markus
    Bäck, Thomas
    Structural and Multidisciplinary Optimization, 2025, 68 (04)
  • [10] Fast Optimization of Microwave Filters using Surrogate-Based Optimization Methods
    Chemmangat, Krishnan
    Deschrijver, Dirk
    Couckuyt, Ivo
    Dhaene, Tom
    Knockaert, Luc
    2012 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2012, : 212 - 215