Selected topics on Wiener index

被引:1
作者
Knor, Martin [1 ]
Skrekovski, Riste [2 ,3 ,4 ,5 ]
Tepeh, Aleksandra [3 ,6 ]
机构
[1] Fac Civil Engn, Dept Math, Bratislava, Slovakia
[2] Univ Ljubljana, FMF, Ljubljana, Slovenia
[3] Fac Informat Studies, Novo Mesto, Slovenia
[4] Inst Math Phys & Mech, Ljubljana, Slovenia
[5] Univ Primorska, FAMNIT, Koper, Slovenia
[6] Univ Maribor, Fac Elect Engn & Comp Sci, Maribor, Slovenia
关键词
chemical graph theory; Graph distance; Wiener index; average distance; topological index; molecular descriptor; GRAPHS; TREES; VERTICES; DISTANCE; NUMBER; COUNTEREXAMPLES; ORIENTATIONS; DIAMETER; ORDER;
D O I
10.26493/1855-3974.3077.63a
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Wiener index is defined as the sum of distances between all unordered pairs of vertices in a graph. It is one of the most recognized and well-researched topological indices, which is on the other hand still a very active area of research. This work presents a natural continuation of the paper Mathematical aspects of Wiener index (Ars Math. Contemp., 2016) in which several interesting open questions on the topic were outlined. Here we collect answers gathered so far, give further insights on the topic of extremal values of Wiener index in different settings, and present further intriguing problems and conjectures.
引用
收藏
页数:31
相关论文
共 84 条
  • [1] Wiener index and graphs, almost half of whose vertices satisfy olt?s property
    Akhmejanova, Margarita
    Olmezov, Konstantin
    Volostnov, Aleksei
    Vorobyev, Ilya
    Vorob'ev, Konstantin
    Yarovikov, Yury
    [J]. DISCRETE APPLIED MATHEMATICS, 2023, 325 : 37 - 42
  • [2] Some Vertex/Edge-Degree-Based Topological Indices of r-Apex Trees
    Ali, Akbar
    Iqbal, Waqas
    Raza, Zahid
    Ali, Ekram E.
    Liu, Jia-Bao
    Ahmad, Farooq
    Chaudhry, Qasim Ali
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021
  • [3] Alizadeh Y, 2014, MATCH-COMMUN MATH CO, V72, P279
  • [4] Alochukwu A, 2021, DISCRETE MATH THEOR, V23
  • [5] Basic N, 2023, Arxiv, DOI arXiv:2303.11996
  • [6] Graphs with the second and third maximum Wiener indices over the 2-vertex connected graphs
    Bessy, Stephane
    Dross, Francois
    Knor, Martin
    Skrekovski, Riste
    [J]. DISCRETE APPLIED MATHEMATICS, 2020, 284 : 195 - 200
  • [7] Bessy S, 2020, APPL MATH COMPUT, V380
  • [8] The structure of graphs with given number of blocks and the maximum Wiener index
    Bessy, Stephane
    Dross, Francois
    Hrinakova, Katarina
    Knor, Martin
    Skrekovski, Riste
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (01) : 170 - 184
  • [9] Bok J, 2019, ACTA MATH UNIV COMEN, V88, P475
  • [10] A Relaxed Version of Soltes's Problem and Cactus Graphs
    Bok, Jan
    Jedlickova, Nikola
    Maxova, Jana
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (06) : 3733 - 3745