GMNI: Achieve good data augmentation in unsupervised graph contrastive learning

被引:0
|
作者
Xiong, Xin [1 ]
Wang, Xiangyu [1 ]
Yang, Suorong [1 ]
Shen, Furao [1 ]
Zhao, Jian [2 ]
机构
[1] Nanjing Univ, State Key Lab Novel Software Technol, Nanjing 210023, Peoples R China
[2] Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Graph neural network; Graph contrastive learning; Data augmentation;
D O I
10.1016/j.neunet.2024.106804
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph contrastive learning (GCL) shows excellent potential in unsupervised graph representation learning. Data augmentation (DA), responsible for generating diverse views, plays a vital role in GCL, and its optimal choice heavily depends on the downstream task. However, it is impossible to measure task-relevant information under an unsupervised setting. Therefore, many GCL methods risk insufficient information by failing to preserve essential information necessary for the downstream task or risk encoding redundant information. In this paper, we propose a novel method called Minimal Noteworthy Information for unsupervised Graph contrastive learning (GMNI), featuring automated DA. It achieves good DA by balancing missing and excessive information, approximating the optimal views in contrastive learning. We employ an adversarial training strategy to generate views that share minimal noteworthy information (MNI), reducing nuisance information by minimization optimization and ensuring sufficient information by emphasizing noteworthy information. Besides, we introduce randomness based on MNI to augmentation, thereby enhancing view diversity and stabilizing the model against perturbations. Extensive experiments on unsupervised and semi-supervised learning over 14 datasets demonstrate the superiority of GMNI over GCL methods with automated and manual DA. GMNI achieves up to a 1.64% improvement over the state-of-the-art in unsupervised node classification, up to a 1.97% improvement in unsupervised graph classification, and up to a 3.57% improvement in semi-supervised graph classification.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Adaptive graph contrastive learning with joint optimization of data augmentation and graph encoder
    Zhenpeng Wu
    Jiamin Chen
    Raeed Al-Sabri
    Babatounde Moctard Oloulade
    Jianliang Gao
    Knowledge and Information Systems, 2024, 66 : 1657 - 1681
  • [2] Adaptive graph contrastive learning with joint optimization of data augmentation and graph encoder
    Wu, Zhenpeng
    Chen, Jiamin
    Al-Sabri, Raeed
    Oloulade, Babatounde Moctard
    Gao, Jianliang
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (03) : 1657 - 1681
  • [3] Unsupervised Graph Transformer With Augmentation-Free Contrastive Learning
    Zhao, Han
    Yang, Xu
    Wei, Kun
    Deng, Cheng
    Tao, Dacheng
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 7296 - 7307
  • [4] AAGCN: An adaptive data augmentation for graph contrastive learning
    Qin, Peng
    Lu, Yaochun
    Chen, Weifu
    Li, Defang
    Feng, Guocan
    PATTERN RECOGNITION, 2025, 163
  • [5] Graph contrastive learning for recommendation with generative data augmentation
    Li, Xiaoge
    Wang, Yin
    Wang, Yihan
    An, Xiaochun
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [6] Encoder augmentation for multi-task graph contrastive learning
    Wang, Xiaoyu
    Zhang, Qiqi
    Liu, Gen
    Zhao, Zhongying
    Cui, Hongzhi
    NEUROCOMPUTING, 2025, 630
  • [7] Adaptive Graph Augmentation for Graph Contrastive Learning
    Wang, Zeming
    Li, Xiaoyang
    Wang, Rui
    Zheng, Changwen
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT IV, 2023, 14089 : 354 - 366
  • [8] Features based adaptive augmentation for graph contrastive learning
    Ali, Adnan
    Li, Jinlong
    DIGITAL SIGNAL PROCESSING, 2024, 145
  • [9] Influence-Guided Data Augmentation in Graph Contrastive Learning for Recommendation
    Zhang, Qi
    Xi, Heran
    Zhu, Jinghua
    SERVICE-ORIENTED COMPUTING, ICSOC 2023, PT II, 2023, 14420 : 91 - 99
  • [10] Heterogeneous data augmentation in graph contrastive learning for effective negative samples
    Ali, Adnan
    Li, Jinlong
    Chen, Huanhuan
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 118