Dual-branch channel attention enhancement feature fusion network for diabetic retinopathy segmentation

被引:0
作者
Ma, Lei
Liu, Ziqian
Xu, Qihang
Hong, Hanyu [1 ]
Wang, Lei
Zhu, Ying
Shi, Yu
机构
[1] Wuhan Inst Technol, Sch Elect & Informat Engn, Wuhan 430205, Hubei, Peoples R China
关键词
U-Net; Transformer; Feature fusion; Channel attention enhancement; Diabetic retinopathy segmentation; LESION SEGMENTATION;
D O I
10.1016/j.bspc.2025.107721
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Diabetic retinopathy (DR) is an eye disease caused by diabetes that leads to impaired vision and even blindness. DR segmentation technology can assist ophthalmologists with early diagnosis, which can help to prevent the progression of this disease. However, DR segmentation is a challenging task because of the large variation in scale, high inter-class similarity, complex structures, blurred edges and different brightness contrasts of different kinds of lesions. Most existing methods tend not to adequately extract the semantic information in the channels of lesion features, which is a critical element for effectively distinguishing lesion edges. In this paper, we propose a dual-branch channel attention enhancement feature fusion network that integrates CNN and Transformer for DR segmentation. First, we introduce a Channel Crossing Attention Module (CCAM) into the UNet framework to eliminate semantic inconsistencies between the encoder and decoder for better integration of contextual information. Moreover, we leverage Transformer's robust global information acquisition capabilities to acquire long-range information, and further enhance the contextual information. Finally, we build a Dual- branch Channel Attention Enhancement Fusion Module (DCAE) to enhance the semantic information of the channels in both branches, which improves the discriminability of the blurred edges of lesions. Compared with the state-of-the-art methods, our method improved mAUPR, mDice, and mIOU by 1.36%, 1.85%, and 2.20% on the IDRiD dataset, and by 4.62%, 0.20%, and 2.60% on the DDR dataset, respectively. The experimental results show that the multi-scale semantic features of the two branches are effectively fused, which achieves accurate lesion segmentation.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] TCUNet: A Lightweight Dual-Branch Parallel Network for Sea-Land Segmentation in Remote Sensing Images
    Xiong, Xuan
    Wang, Xiaopeng
    Zhang, Jiahua
    Huang, Baoxiang
    Du, Runfeng
    REMOTE SENSING, 2023, 15 (18)
  • [42] Dual-Branch Remote Sensing Building Extraction Network Based on Texture Enhancement
    Chen Xu
    Shi Mingchang
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (14)
  • [43] DFSDNet: A dual-branch multi-scale feature fusion network for surface defect detection of copper strips and plates
    Wan, Fajia
    Zhang, Guo
    Li, Zeteng
    COMPUTERS IN INDUSTRY, 2025, 167
  • [44] DBFF-GRU: dual-branch temporal feature fusion network with fast GRU for multivariate time series forecasting
    Li, Jinglei
    Liu, Dongsheng
    Ma, Guofang
    Chen, Yaning
    Jiang, Hongwei
    APPLIED INTELLIGENCE, 2025, 55 (07)
  • [45] Gca-pvt-net: group convolutional attention and PVT dual-branch network for oracle bone drill chisel segmentation
    Liu, Guoqi
    Yang, Yiping
    Li, Xueshan
    Liu, Dong
    Ru, Linyuan
    Han, Yanbiao
    HERITAGE SCIENCE, 2024, 12 (01):
  • [46] Dual-branch multi-information aggregation network with transformer and convolution for polyp segmentation
    Zhang, Wenyu
    Lu, Fuxiang
    Su, Hongjing
    Hu, Yawen
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 168
  • [47] Lightweight Semantic Segmentation Network based on Attention Feature Fusion
    Kuang, Xianyan
    Liu, Ping
    Chen, Yixi
    Zhang, Jianhua
    ENGINEERING LETTERS, 2023, 31 (04) : 1584 - 1591
  • [48] DSAFuse: Infrared and visible image fusion via dual-branch spatial adaptive feature extraction
    Shen, Shixian
    Feng, Yong
    Liu, Nianbo
    Liu, Ming
    Li, Yingna
    NEUROCOMPUTING, 2025, 616
  • [49] Lightweight and multi-lesion segmentation model for diabetic retinopathy based on the fusion of mixed attention and ghost feature mapping
    Gao, Weiwei
    Fan, Bo
    Fang, Yu
    Song, Nan
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 169
  • [50] DFTI: Dual-Branch Fusion Network Based on Transformer and Inception for Space Noncooperative Objects
    Zhang, Zhao
    Zhou, Dong
    Sun, Guanghui
    Hu, YuHui
    Deng, Runran
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73