Dual-branch channel attention enhancement feature fusion network for diabetic retinopathy segmentation

被引:0
|
作者
Ma, Lei
Liu, Ziqian
Xu, Qihang
Hong, Hanyu [1 ]
Wang, Lei
Zhu, Ying
Shi, Yu
机构
[1] Wuhan Inst Technol, Sch Elect & Informat Engn, Wuhan 430205, Hubei, Peoples R China
关键词
U-Net; Transformer; Feature fusion; Channel attention enhancement; Diabetic retinopathy segmentation; LESION SEGMENTATION;
D O I
10.1016/j.bspc.2025.107721
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Diabetic retinopathy (DR) is an eye disease caused by diabetes that leads to impaired vision and even blindness. DR segmentation technology can assist ophthalmologists with early diagnosis, which can help to prevent the progression of this disease. However, DR segmentation is a challenging task because of the large variation in scale, high inter-class similarity, complex structures, blurred edges and different brightness contrasts of different kinds of lesions. Most existing methods tend not to adequately extract the semantic information in the channels of lesion features, which is a critical element for effectively distinguishing lesion edges. In this paper, we propose a dual-branch channel attention enhancement feature fusion network that integrates CNN and Transformer for DR segmentation. First, we introduce a Channel Crossing Attention Module (CCAM) into the UNet framework to eliminate semantic inconsistencies between the encoder and decoder for better integration of contextual information. Moreover, we leverage Transformer's robust global information acquisition capabilities to acquire long-range information, and further enhance the contextual information. Finally, we build a Dual- branch Channel Attention Enhancement Fusion Module (DCAE) to enhance the semantic information of the channels in both branches, which improves the discriminability of the blurred edges of lesions. Compared with the state-of-the-art methods, our method improved mAUPR, mDice, and mIOU by 1.36%, 1.85%, and 2.20% on the IDRiD dataset, and by 4.62%, 0.20%, and 2.60% on the DDR dataset, respectively. The experimental results show that the multi-scale semantic features of the two branches are effectively fused, which achieves accurate lesion segmentation.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Dual-branch feature fusion dehazing network via multispectral channel attention
    Jian, Huachun
    Zhang, Yongjun
    Gao, Weihao
    Wang, Bufan
    Wang, Guomei
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (07) : 2655 - 2671
  • [2] A Multiscale Dual-Branch Feature Fusion and Attention Network for Hyperspectral Images Classification
    Gao, Hongmin
    Zhang, Yiyan
    Chen, Zhonghao
    Li, Chenming
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 8180 - 8192
  • [3] DBFAM: A dual-branch network with efficient feature fusion and attention-enhanced gating for medical image segmentation
    Ren, Benzhe
    Zheng, Yuhui
    Zheng, Zhaohui
    Ding, Jin
    Wang, Tao
    Journal of Visual Communication and Image Representation, 2025, 109
  • [4] A Dual-Branch Fusion Network for Surgical Instrument Segmentation
    Yang, Lei
    Zhai, Chenxu
    Wang, Hongyong
    Liu, Yanhong
    Bian, Guibin
    IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS, 2024, 6 (04): : 1542 - 1554
  • [5] DBF-Net: A Dual-Branch Network with Feature Fusion for Ultrasound Image Segmentation
    Xu, Guoping
    Wu, Xiaming
    Liao, Wentao
    Wu, Xinglong
    Huang, Qing
    Li, Chang
    arXiv,
  • [6] DCFNet: An Effective Dual-Branch Cross-Attention Fusion Network for Medical Image Segmentation
    Zhu, Chengzhang
    Zhang, Renmao
    Xiao, Yalong
    Zou, Beiji
    Chai, Xian
    Yang, Zhangzheng
    Hu, Rong
    Duan, Xuanchu
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 140 (01): : 1103 - 1128
  • [7] Dual-Branch Feature Fusion Network for Salient Object Detection
    Song, Zhehan
    Xu, Zhihai
    Wang, Jing
    Feng, Huajun
    Li, Qi
    PHOTONICS, 2022, 9 (01)
  • [8] DBFNet: A Dual-Branch Fusion Network for Underwater Image Enhancement
    Sun, Kaichuan
    Tian, Yubo
    REMOTE SENSING, 2023, 15 (05)
  • [9] WDFF-Net: Weighted Dual-Branch Feature Fusion Network for Polyp Segmentation With Object-Aware Attention Mechanism
    Cao, Jie
    Wang, Xin
    Qu, Zhiwei
    Zhuo, Li
    Li, Xiaoguang
    Zhang, Hui
    Yang, Yang
    Wei, Wei
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (07) : 4118 - 4131
  • [10] DB-DCAFN: dual-branch deformable cross-attention fusion network for bacterial segmentation
    Wang, Jingkun
    Ma, Xinyu
    Cao, Long
    Leng, Yilin
    Li, Zeyi
    Cheng, Zihan
    Cao, Yuzhu
    Huang, Xiaoping
    Zheng, Jian
    VISUAL COMPUTING FOR INDUSTRY BIOMEDICINE AND ART, 2023, 6 (01)