The effects of counter ion on CO2 capture performance of amino acid salt solutions for direct air capture applications

被引:1
作者
Abdellah, Mohamed H. [1 ]
Kiani, Ali [1 ]
Conway, William [1 ]
Puxty, Graeme [1 ]
Feron, Paul [2 ]
机构
[1] CSIRO Energy, Mayfield West, NSW 2304, Australia
[2] CSIRO Energy, Clayton, VIC 3168, Australia
关键词
Counter ion; Direct air capture; Carbon dioxide; Amino acids; Mass transfer coefficient; CARBON-DIOXIDE ABSORPTION; LIQUID VISCOSITY; KINETICS; POTASSIUM; PRECIPITATION; GLYCINATE; SOLVENTS; SODIUM; AREA;
D O I
10.1016/j.seppur.2024.130390
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Direct CO2 capture from the atmosphere has received growing attention driven by the imperative of achieving global net-zero emission targets. Amino acid salt solutions are promising candidates for liquid-based direct air capture processes. Utilised as a neutralized salt by reacting initially with hydroxides, it has been speculated that their performance may vary with the type of counter ion present in the solution. This work investigates the influence of counter ions, potassium, sodium, and lithium, of different amino acid salt solutions on the physical properties, the CO2 absorption capacities, and the CO2 absorption kinetics under atmospheric CO2 concentration levels. The potassium-based amino acid solutions exhibited significantly lower viscosities and mildly elevated densities compared to sodium- and lithium-based solutions. At 25 degrees C, the potassium-prolinate solution demonstrated the highest viscosity (8.5 mPa s), whereas potassium-glycinate exhibited the lowest viscosity (2.5 mPa s). Additionally, potassium-based solutions consistently displayed the highest CO2 mass transfer coefficients, followed by sodium- and lithium-based solutions. The CO2 mass transfer coefficient was the highest for potassium-prolinate (2.99 mmol m(-2) s(-1) kPa(-1)) with the lowest rate observed for potassium-beta-alaninate (1.68 mmol m(-2) s(-1) kPa(-1)). Interestingly, the type of counter ion had minimal impact on the CO2 absorption capacity, with potassium-based solutions exhibiting only a slightly elevated capacity compared to sodium- and lithium-based solutions. Specifically, potassium-lysinate displayed the highest CO2 absorption capacity (0.7 mol CO2 /mol amine), while potassium-beta-alaninate showed the lowest (0.65 mol CO2/mol amine). It should be noted that all lithium-based solutions of all amino acids formed precipitates at the equilibrium CO2 absorption capacity. From a practical and operational perspective, these findings suggest that the potassium salt solution of amino acids would be the optimal choice for direct air capture applications due to their enhanced solubility and CO2 mass transfer rates compared to the corresponding sodium and lithium counter ion salt solutions.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] A study on degradation and CO2 capture performance of aqueous amino acid salts for direct air capture applications
    Kiani, Ali
    Conway, Will
    Abdellah, Mohamed H.
    Puxty, Graeme
    Minor, Ann-Joelle
    Kluivers, Gerard
    Bennett, Robert
    Feron, Paul
    GREENHOUSE GASES-SCIENCE AND TECHNOLOGY, 2024, 14 (05): : 859 - 870
  • [2] CO2 Capture Using Activated Amino Acid Salt Solutions in a Membrane Contactor
    Lu, Jian-Gang
    Ji, Yan
    Zhang, Hui
    Chen, Min-Dong
    SEPARATION SCIENCE AND TECHNOLOGY, 2010, 45 (09) : 1240 - 1251
  • [3] Direct air capture of CO2 using green amino acid salts
    Momeni, Arash
    V. McQuillan, Rebecca
    Alivand, Masood S.
    Zavabeti, Ali
    Stevens, Geoffrey W.
    Mumford, Kathryn A.
    CHEMICAL ENGINEERING JOURNAL, 2024, 480
  • [4] Regeneration performance of amino acid ionic liquid (AAIL) activated MDEA solutions for CO2 capture
    Zhang Feng
    Gao Yuan
    Wu Xian-Kun
    Ma Jing-Wen
    Wu You-Ting
    Zhang Zhi-Bing
    CHEMICAL ENGINEERING JOURNAL, 2013, 223 : 371 - 378
  • [5] State-of-the-art of CO2 capture with amino acid salt solutions
    Ramezani, Rouzbeh
    Mazinani, Saeed
    Di Felice, Renzo
    REVIEWS IN CHEMICAL ENGINEERING, 2022, 38 (03) : 273 - 299
  • [6] Synergistic direct air capture of CO2 with aqueous guanidine/amino acid solvents
    Stamberga, Diana
    Thiele, Nikki A.
    Custelcean, Radu
    MRS ADVANCES, 2022, 7 (19) : 399 - 403
  • [7] Comparative microfluidic screening of amino acid salt solutions for post-combustion CO2 capture
    Hallenbeck, Alexander P.
    Egbebi, Adefemi
    Resnik, Kevin P.
    Hopkinson, David
    Anna, Shelley L.
    Kitchin, John R.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2015, 43 : 189 - 197
  • [8] Thermal degradation of amino acid salts in CO2 capture
    Huang, Quanzhen
    Bhatnagar, Saloni
    Remias, Joseph E.
    Selegue, John P.
    Liu, Kunlei
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2013, 19 : 243 - 250
  • [9] Direct Air Capture of CO2 Using Solvents
    Custelcean, Radu
    ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, 2022, 13 : 217 - 234
  • [10] Sub-Ambient Performance of Potassium Sarcosinate for Direct Air Capture Applications: CO2 Flux and Viscosity Measurements
    Kasturi, Abishek
    Gabitto, Jorge
    Jang, Gyoung Gug
    Thompson, Joshua A.
    Seo, Jiho
    Sholl, David S.
    Yiacoumi, Sotira
    Custelcean, Radu
    Tsouris, Costas
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 357