A Panoramic Review on Cutting-Edge Methods for Video Anomaly Localization

被引:0
作者
Nayak, Rashmiranjan [1 ]
Mishra, Sambit Kumar [2 ]
Dalai, Asish Kumar [3 ]
Pati, Umesh Chandra [1 ]
Das, Santos Kumar [1 ]
机构
[1] Natl Inst Technol Rourkela, Dept Elect & Commun Engn, Rourkela 769008, Odisha, India
[2] SRM Univ AP, Dept Comp Sci & Engn, Amaravati 522502, Andhra Pradesh, India
[3] VIT AP Univ, Sch Comp Sci & Engn, Amaravati 522237, India
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Location awareness; Spatiotemporal phenomena; Anomaly detection; Training; Surveys; Mathematical models; Performance evaluation; IEEE Senior Members; Feature extraction; Video surveillance; Deep learning; explainable learning; saliency detection; statistical method; video anomaly detection; video anomaly localization; ABNORMAL-BEHAVIOR DETECTION; ADVERSARIAL NETWORK; NEURAL-NETWORKS; EVENT DETECTION; RECOGNITION; ONLINE; SCENES; REPRESENTATION; ATTENTION; FRAMEWORK;
D O I
10.1109/ACCESS.2024.3510039
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Video anomaly detection and localization is the process of spatiotemporally localizing the anomalous video segment corresponding to the abnormal event or activities. It is challenging due to the inherent ambiguity of anomalies, diverse environmental factors, the intricate nature of human activities, and the absence of adequate datasets. Further, the spatial localization of the video anomalies (video anomaly localization) after the temporal localization of the video anomalies (video anomaly detection) is also a complex task. Video anomaly localization is essential for pinpointing the anomalous event or object in the spatial domain. Hence, the intelligent video surveillance system must have video anomaly detection and localization as key functionalities. However, the state-of-the-art lacks a dedicated survey of video anomaly localization. Hence, this article comprehensively surveys the cutting-edge approaches for video anomaly localization, associated threshold selection strategies, publicly available datasets, performance evaluation criteria, and open trending research challenges with potential solution strategies.
引用
收藏
页码:186380 / 186412
页数:33
相关论文
共 190 条
  • [1] Chandola V., Banerjee A., Kumar V., Anomaly detection: A survey, ACM Comput. Surv., 41, 3, pp. 1-58, (2009)
  • [2] Nayak R., Pati U.C., Das S.K., A comprehensive review on deep learning-based methods for video anomaly detection, Image Vis. Comput., 106, (2021)
  • [3] Shi L., Gangopadhyay A., Janeja V.P., STenSr: Spatio-temporal tensor streams for anomaly detection and pattern discovery, Knowl. Inf. Syst., 43, 2, pp. 333-353, (2015)
  • [4] Chandrakala S., Anomalous human activity detection in videos using bag-of-adapted-models-based representation, Pattern Anal. Appl., 26, 3, pp. 1101-1112, (2023)
  • [5] Khan W., Mohd A., Suaib M., Ishrat M., Shaikh A.A., Faisal S.M., Residual-enhanced graph convolutional networks with hypersphere mapping for anomaly detection in attributed networks, Data Sci. Manage., (2024)
  • [6] Kaltsa V., Briassouli A., Kompatsiaris I., Hadjileontiadis L.J., Strintzis M.G., Swarm intelligence for detecting interesting events in crowded environments, IEEE Trans. Image Process., 24, 7, pp. 2153-2166, (2015)
  • [7] Munawar A., Vinayavekhin P., De Magistris G., Spatio-temporal anomaly detection for industrial robots through prediction in unsupervised feature space, in Proc. IEEE Winter Conf. Appl. Comput. Vis. (WACV), pp. 1017-1025, (2017)
  • [8] Pimentel T., Monteiro M., Veloso A., Ziviani N., Deep active learning for anomaly detection, (2018)
  • [9] Leyva R., Sanchez V., Li C.-T., Video anomaly detection with compact feature sets for online performance, IEEE Trans. Image Process., 26, 7, pp. 3463-3478, (2017)
  • [10] Wang T., Qiao M., Lin Z., Li C., Snoussi H., Liu Z., Choi C., Generative neural networks for anomaly detection in crowded scenes, IEEE Trans. Inf. Forensics Security, 14, 5, pp. 1390-1399, (2019)