Taohong Siwu Decoction improves cerebral ischemia-reperfusion injury through SIRT1/FOXO1 signaling pathway

被引:0
|
作者
Li, Yumeng [1 ,2 ]
Yu, Chao [1 ,2 ]
Xue, Sujun [1 ,2 ]
Zhang, Lijuan [1 ,2 ]
Li, Jingjing [1 ,2 ]
Li, Shuangping [1 ,2 ]
Ye, Qingping [1 ,2 ]
Duan, Xianchun [1 ,2 ,3 ,4 ,5 ]
Peng, Daiyin [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Anhui Univ Chinese Med, Dept Pharm, Affiliated Hosp 1, Hefei 230031, Peoples R China
[2] Anhui Univ Chinese Med, Sch Pharm, Hefei 230012, Peoples R China
[3] Minist Educ, Key Lab Xinan Med, Hefei 230012, Peoples R China
[4] Anhui Univ Chinese Med, Key Lab Chinese Med Formula Res, Hefei 230012, Peoples R China
[5] Anhui Prov Key Lab Chinese Med Formula, Hefei 230012, Peoples R China
[6] MOE Anhui Joint Collaborat Innovat Ctr Qual Improv, Hefei 230012, Peoples R China
[7] Anhui Prov Modern Chinese Med Ind Common Technol R, Hefei 230012, Peoples R China
关键词
Ischemic stroke; Taohong Siwu Decoction; Oxidative stress; Autophagy; Apoptosis; SIRT1/FOXO1 signaling pathway; ISCHEMIA/REPERFUSION INJURY; AUTOPHAGY; RATS;
D O I
10.1016/j.jff.2024.106574
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Background: Ischemic stroke (IS), generally referred to as cerebral infarction (CI), is a high-risk stroke. After CI, blood vessels need to be reopened, and cerebral ischemia-reperfusion injury (CIRI) is prone to occur during this period. Taohong Siwu Decoction (THSWD) is a traditional Chinese herbal formula that has been used to activate blood circulation and remove blood stasis. It has been confirmed that THSWD can improve CIRI caused by ischemic stroke, but its specific mechanism is not clear. Methods: We observed the protective effect of THSWD on rats that had undergone middle cerebral artery occlusion and reperfusin (MCAO/R) and PC12 cells after oxygen glucose deprivation/re-oxygenation (OGD/R) injury based on the silent information regulator 1/forkhead box protein O1 (SIRT1/FOXO1) signaling pathway. We explored the role of the SIRT1/FOXO1 signaling pathway on the use of THSWD for ischemic stroke (IS) and its mechanism from the perspectives of oxidative stress, autophagy and apoptosis. Experimental tools included neurological deficit assessment, staining, Tunel assay, transmission electron microscopy, flow cytometry, immunofluorescence, immunohistochemistry, and Western blot. Results: We detected activation of the SIRT1/FOXO1 signaling pathway after THSWD administration on MCAO/R rats and PC12 cells after OGD/R. THSWD attenuated oxidative stress, enhanced autophagy, and inhibited apoptosis. Conclusion: THSWD can improve CIRI by modulating the SIRT1/FOXO1 signaling pathway.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Resveratrol protection against IL-1β-induced chondrocyte damage via the SIRT1/FOXO1 signaling pathway
    ChuanCai Liang
    Hengte Xing
    ChenYu Wang
    XiongFeng Xu
    Yarong Hao
    Bo Qiu
    Journal of Orthopaedic Surgery and Research, 17
  • [32] Resveratrol protection against IL-1β-induced chondrocyte damage via the SIRT1/FOXO1 signaling pathway
    Liang, ChuanCai
    Xing, Hengte
    Wang, ChenYu
    Xu, XiongFeng
    Hao, Yarong
    Qiu, Bo
    JOURNAL OF ORTHOPAEDIC SURGERY AND RESEARCH, 2022, 17 (01)
  • [33] P-hydroxybenzyl alcohol ameliorates neuronal cerebral ischemia-reperfusion injury by activating mitochondrial autophagy through SIRT1
    Yu, Xinglin
    Luo, Yuan
    Yang, Liping
    Chen, Pu
    Duan, Xiaohua
    MOLECULAR MEDICINE REPORTS, 2023, 27 (03)
  • [34] Neuroprotective Effect of Astragaloside IV on Cerebral Ischemia/Reperfusion Injury Rats Through Sirt1/Mapt Pathway
    Shi, Yi-Hua
    Zhang, Xi-Le
    Ying, Peng-Jie
    Wu, Zi-Qian
    Lin, Le-Le
    Chen, Wei
    Zheng, Guo-Qing
    Zhu, Wen-Zong
    FRONTIERS IN PHARMACOLOGY, 2021, 12
  • [35] Suppression of miR-34a Expression in the Myocardium Protects Against Ischemia-Reperfusion Injury Through SIRT1 Protective Pathway
    Fu, Bi-Cheng
    Lang, Ji-Lu
    Zhang, Dong-Yang
    Sun, Lu
    Chen, Wei
    Liu, Wei
    Liu, Kai-Yu
    Ma, Chong-Yi
    Jiang, Shu-Lin
    Li, Ren-Ke
    Tian, Hai
    STEM CELLS AND DEVELOPMENT, 2017, 26 (17) : 1270 - 1282
  • [36] Protective Role of Fucoidan in Cerebral Ischemia-Reperfusion Injury through Inhibition of MAPK Signaling Pathway
    Che, Nan
    Ma, Yijie
    Xin, Yinhu
    BIOMOLECULES & THERAPEUTICS, 2017, 25 (03) : 272 - 278
  • [37] Abnormalities in the SIRT1-SIRT3 axis promote myocardial ischemia-reperfusion injury through ferroptosis caused by silencing the PINK1/Parkin signaling pathway
    Liao, Yunfei
    Ke, Ben
    Long, Xiaoyan
    Xu, Jianjun
    Wu, Yongbing
    BMC CARDIOVASCULAR DISORDERS, 2023, 23 (01)
  • [38] Sirt1 Activation by Post-ischemic Treatment With Lumbrokinase Protects Against Myocardial Ischemia-Reperfusion Injury
    Wang, Yi-Hsin
    Li, Shun-An
    Huang, Chao-Hsin
    Su, Hsing-Hui
    Chen, Yi-Hung
    Chang, Jinghua T.
    Huang, Shiang-Suo
    FRONTIERS IN PHARMACOLOGY, 2018, 9
  • [39] Autophagy promotes directed migration of HUVEC in response to electric fields through the ROS/SIRT1/FOXO1 pathway
    Li, Yi
    Jiang, Xupin
    Zhang, Ze
    Liu, Jie
    Wu, Chao
    Chen, Ying
    Zhou, Junli
    Zhang, Jiaping
    Zhang, Xuanfen
    FREE RADICAL BIOLOGY AND MEDICINE, 2022, 192 : 213 - 223
  • [40] SIRT1 ameliorates renal ischemia-reperfusion injury through suppressing endoplasmic reticulum stress-mediated autophagy
    Chen, Yu
    Liu, Hao
    Zheng, Xueyang
    Wang, Jiyuan
    Wang, Liming
    Yang, Jinghui
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2022, 14 (05): : 3419 - 3429