Metabolomic Profiling and Machine Learning Models for Tumor Classification in Patients with Recurrent IDH-Wild-Type Glioblastoma: A Prospective Study

被引:0
作者
Hodeify, Rawad [1 ]
Yu, Nina [2 ]
Balasubramaniam, Meenakshisundaram [3 ]
Godinez, Felipe [4 ,5 ]
Liu, Yin [2 ,6 ,7 ,8 ]
Aboud, Orwa [2 ,4 ,7 ,8 ]
机构
[1] Amer Univ Ras Al Khaimah, Sch Arts & Sci, Dept Biotechnol, Ras Al Khaymah 72603, U Arab Emirates
[2] Univ Calif Davis, Sch Med, Sacramento, CA 95817 USA
[3] Univ Arkansas Med Sci, Reynolds Inst Aging, Dept Geriatr, Little Rock, AR 72205 USA
[4] Univ Calif Davis, UC Davis Comprehens Canc Ctr, Sacramento, CA 95817 USA
[5] Univ Calif Davis, Dept Radiol, Sacramento, CA 95817 USA
[6] Univ Calif Davis, Dept Ophthalmol & Vis Sci, Sacramento, CA 95817 USA
[7] Univ Calif Davis, Dept Neurol, Sacramento, CA 95817 USA
[8] Univ Calif Davis, Dept Neurol Surg, Sacramento, CA 95817 USA
基金
美国国家卫生研究院;
关键词
glioblastoma; machine learning; metabolomics; recurrence; TEMOZOLOMIDE; RESISTANCE; RESECTION;
D O I
10.3390/cancers16223856
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background/Objectives: The recurrence of glioblastoma is an inevitable event in this disease's course. In this study, we sought to identify the metabolomic signature in patients with recurrent glioblastomas undergoing surgery and radiation therapy. Methods: Blood samples collected prospectively from six patients with recurrent IDH-wildtype glioblastoma who underwent one surgery at diagnosis and a second surgery at relapse were analyzed using untargeted gas chromatography-time-of-flight mass spectrometry to measure metabolite abundance. The data analysis techniques included univariate analysis, correlation analysis, and a sample t-test. For predictive modeling, machine learning (ML) algorithms such as multinomial logistic regression, gradient boosting, and random forest were applied to predict the classification of samples in the correct treatment phase. Results: Comparing samples after the first surgery and after the relapse surgeries to the pre-operative samples showed a significant decrease in sorbitol and mannitol; there was a significant increase in urea, oxoproline, glucose, and alanine. After chemoradiation, two metabolites, erythritol and 6-deoxyglucitol, showed a decrease, with a cut-off of three and a significant reduction for 6-deoxyglucitol, while 2,4-difluorotoluene and 9-myristoleate showed an increase post radiation, with a fold-change cut-off of three. The gradient-boosting ML model achieved a high performance for the prediction of tumor conditions in patients with glioblastoma who had undergone relapse surgery. Conclusions: We developed an ML predictor for tumor phase based on the plasma metabolomic profile. Our study suggests the potential of combining metabolomics with ML as a new tool to stratify the risk of tumor progression in patients with glioblastoma.
引用
收藏
页数:11
相关论文
共 28 条
[1]   Application of Machine Learning to Metabolomic Profile Characterization in Glioblastoma Patients Undergoing Concurrent Chemoradiation [J].
Aboud, Orwa ;
Liu, Yin Allison ;
Fiehn, Oliver ;
Brydges, Christopher ;
Fragoso, Ruben ;
Lee, Han Sung ;
Riess, Jonathan ;
Hodeify, Rawad ;
Bloch, Orin .
METABOLITES, 2023, 13 (02)
[2]   Tumor Heterogeneity in Glioblastomas: From Light Microscopy to Molecular Pathology [J].
Becker, Aline P. ;
Sells, Blake E. ;
Haque, S. Jaharul ;
Chakravarti, Arnab .
CANCERS, 2021, 13 (04) :1-25
[3]   Glioblastoma Metabolism: Insights and Therapeutic Strategies [J].
Bernhard, Chloe ;
Reita, Damien ;
Martin, Sophie ;
Entz-Werle, Natacha ;
Dontenwill, Monique .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (11)
[4]  
Fiehn Oliver, 2016, Curr Protoc Mol Biol, V114, DOI 10.1002/0471142727.mb3004s114
[5]   Overcoming Temozolomide Resistance in Glioblastoma via Dual Inhibition of NAD+ Biosynthesis and Base Excision Repair [J].
Goellner, Eva M. ;
Grimme, Bradford ;
Brown, Ashley R. ;
Lin, Ying-Chih ;
Wang, Xiao-Hong ;
Sugrue, Kelsey F. ;
Mitchell, Leah ;
Trivedi, Ram N. ;
Tang, Jiang-Bo ;
Sobol, Robert W. .
CANCER RESEARCH, 2011, 71 (06) :2308-2317
[6]   An NAD+-dependent transcriptional program governs self-renewal and radiation resistance in glioblastoma [J].
Gujar, Amit D. ;
Le, Son ;
Mao, Diane D. ;
Dadey, David Y. A. ;
Turski, Alice ;
Sasaki, Yo ;
Aum, Diane ;
Luo, Jingqin ;
Dahiya, Sonika ;
Yuan, Liya ;
Rich, Keith M. ;
Milbrandt, Jeffrey ;
Hallahan, Dennis E. ;
Yano, Hiroko ;
Tran, David D. ;
Kim, Albert H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (51) :E8247-E8256
[7]   Untargeted Metabolomic Characterization of Glioblastoma Intra- Tumor Heterogeneity Using OrbiSIMS [J].
He, Wenshi ;
Edney, Max K. ;
Paine, Simon M. L. ;
Griffiths, Rian L. ;
Scurr, David J. ;
Rahman, Ruman ;
Kim, Dong-Hyun .
ANALYTICAL CHEMISTRY, 2023, 95 (14) :5994-6001
[8]   MGMT gene silencing and benefit from temozolomide in glioblastoma [J].
Hegi, ME ;
Diserens, A ;
Gorlia, T ;
Hamou, M ;
de Tribolet, N ;
Weller, M ;
Kros, JM ;
Hainfellner, JA ;
Mason, W ;
Mariani, L ;
Bromberg, JEC ;
Hau, P ;
Mirimanoff, RO ;
Cairncross, JG ;
Janzer, RC ;
Stupp, R .
NEW ENGLAND JOURNAL OF MEDICINE, 2005, 352 (10) :997-1003
[9]   Long-term survival with IDH wildtype glioblastoma: first results from the ETERNITY Brain Tumor Funders' Collaborative Consortium (EORTC 1419) [J].
Hertler, Caroline ;
Felsberg, Joerg ;
Gramatzki, Dorothee ;
Le Rhun, Emilie ;
Clarke, Jennifer ;
Soffietti, Riccardo ;
Wick, Wolfgang ;
Chinot, Olivier ;
Ducray, Francois ;
Roth, Patrick ;
McDonald, Kerrie ;
Hau, Peter ;
Hottinger, Andreas F. ;
Reijneveld, Jaap ;
Schnell, Oliver ;
Marosi, Christine ;
Glantz, Michael ;
Darlix, Amelie ;
Lombardi, Giuseppe ;
Krex, Dietmar ;
Glas, Martin ;
Reardon, David A. ;
van den Bent, Martin ;
Lefranc, Florence ;
Herrlinger, Ulrich ;
Razis, Evangelia ;
Carpentier, Antoine F. ;
Phillips, Samuel ;
Ruda, Roberta ;
Wick, Antje ;
Tabouret, Emeline ;
Meyronet, David ;
Maurage, Claude-Alain ;
Rushing, Elisabeth ;
Rapkins, Robert ;
Bumes, Elisabeth ;
Hegi, Monika ;
Weyerbrock, Astrid ;
Aregawi, Dawit ;
Gonzalez-Gomez, Christian ;
Pellerino, Alessia ;
Klein, Martin ;
Preusser, Matthias ;
Bendszus, Martin ;
Golfinopoulos, Vassilis ;
von Deimling, Andreas ;
Gorlia, Thierry ;
Wen, Patrick Y. ;
Reifenberger, Guido ;
Weller, Michael .
EUROPEAN JOURNAL OF CANCER, 2023, 189
[10]   A Patient-Derived Glioblastoma Organoid Model and Biobank Recapitulates Inter- and Intra-tumoral Heterogeneity [J].
Jacob, Fadi ;
Salinas, Ryan D. ;
Zhang, Daniel Y. ;
Nguyen, Phuong T. T. ;
Schnoll, Jordan G. ;
Wong, Samuel Zheng Hao ;
Thokala, Radhika ;
Sheikh, Saad ;
Saxena, Deeksha ;
Prokop, Stefan ;
Liu, Di-ao ;
Qian, Xuyu ;
Petrov, Dmitriy ;
Lucas, Timothy ;
Chen, H. Isaac ;
Dorsey, Jay F. ;
Christian, Kimberly M. ;
Binder, Zev A. ;
Nasrallah, MacLean ;
Brem, Steven ;
O'Rourke, Donald M. ;
Ming, Guo-li ;
Song, Hongjun .
CELL, 2020, 180 (01) :188-+