Engineering xylose utilization in Cupriavidus necator for enhanced poly (3-hydroxybutyrate) production from mixed sugars

被引:3
作者
Lee, So Jeong [1 ]
Kim, Jiwon [1 ]
Ahn, Jung Ho [1 ,2 ]
Gong, Gyeongtaek [1 ,2 ]
Um, Youngsoon [1 ,2 ]
Lee, Sun-Mi [3 ]
Kim, Kyoung Heon [4 ]
Ko, Ja Kyong [1 ,2 ]
机构
[1] Korea Inst Sci & Technol KIST, Clean Energy Res Ctr, Seoul 02792, South Korea
[2] Univ Sci & Technol, KIST Sch, Div Energy & Environm Technol, Seoul 02792, South Korea
[3] Korea Univ, Dept Environm Sci & Ecol Engn, Seoul 02841, South Korea
[4] Korea Univ, Dept Biotechnol, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
Biodegradable polymer; Metabolic engineering; Lignocellulosic sugar; Xylose isomerase pathway; Weimberg pathway; ESCHERICHIA-COLI; DAHMS PATHWAY; NITRIC-OXIDE; OPTIMIZATION; METABOLISM; H16;
D O I
10.1016/j.biortech.2024.131996
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Lignocellulosic biomass is a promising renewable feedstock for biodegradable plastics like polyhydroxyalkanoates (PHAs). Cupriavidus necator, a versatile microbial host that synthesizes poly(3hydroxybutyrate) (PHB), the most abundant type of PHA, has been studied to expand its carbon source utilization. Since C. necator NCIMB11599 cannot metabolize xylose, we developed xylose-utilizing strains by introducing synthetic xylose metabolic pathways, including the xylose isomerase, Weimberg, and Dahms pathways. Through rational and evolutionary engineering, the RXI22 and RXW62 strains were able to efficiently utilize xylose as the sole carbon source, producing 64.2 wt% (wt%) and 61.4 wt% PHB, respectively. Among the engineered strains, the xylose isomerase-based RXI22 strain demonstrated the most efficient co-fermentation performance, with a PHB content of 75.7 wt% and a yield of 0.32 (g PHB/g glucose and xylose) from mixed sugars. The strains developed in this study represent an enhanced PHA producer, offering a sustainable route for converting lignocellulosic biomass into bioplastics.
引用
收藏
页数:12
相关论文
共 48 条
[21]   Ultrafast and memory-efficient alignment of short DNA sequences to the human genome [J].
Langmead, Ben ;
Trapnell, Cole ;
Pop, Mihai ;
Salzberg, Steven L. .
GENOME BIOLOGY, 2009, 10 (03)
[22]   The Weimberg pathway: an alternative for Myceliophthora thermophila to utilize d-xylose [J].
Liu, Defei ;
Zhang, Yongli ;
Li, Jingen ;
Sun, Wenliang ;
Yao, Yonghong ;
Tian, Chaoguang .
BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS, 2023, 16 (01)
[23]   Metabolic engineering of genome-streamlined strain Pseudomonas putida KTU-U27 for medium-chain-length polyhydroxyalkanoate production from xylose and cellobiose [J].
Liu, Honglu ;
Chen, Yaping ;
Wang, Siqi ;
Liu, Yujie ;
Zhao, Wanwan ;
Huo, Kaiyue ;
Guo, Hongfu ;
Xiong, Weini ;
Wang, Shufang ;
Yang, Chao ;
Liu, Ruihua .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 253
[24]   Adaptive laboratory evolution principles and applications in industrial biotechnology [J].
Mavrommati, Maria ;
Daskalaki, Alexandra ;
Papanikolaou, Seraphim ;
Aggelis, George .
BIOTECHNOLOGY ADVANCES, 2022, 54
[25]   Co-utilization of glucose and xylose for the production of poly-β-hydroxybutyrate (PHB) by Sphingomonas sanxanigenens NX02 [J].
Ming, Yue ;
Li, Guoqiang ;
Shi, Zhuangzhuang ;
Zhao, Xin ;
Zhao, Yufei ;
Gao, Ge ;
Ma, Ting ;
Wu, Mengmeng .
MICROBIAL CELL FACTORIES, 2023, 22 (01)
[26]   Xylonolactonase from Caulobacter crescentus Is a Mononuclear Nonheme Iron Hydrolase [J].
Paakkonen, Johan ;
Penttinen, Leena ;
Andberg, Martina ;
Koivula, Anu ;
Hakulinen, Nina ;
Rouvinen, Juha ;
Janis, Janne .
BIOCHEMISTRY, 2021, 60 (41) :3046-3049
[27]   Synthetic biology toolkit for engineering Cupriviadus necator H16 as a platform for CO2 valorization [J].
Pan, Haojie ;
Wang, Jia ;
Wu, Haoliang ;
Li, Zhongjian ;
Lian, Jiazhang .
BIOTECHNOLOGY FOR BIOFUELS, 2021, 14 (01)
[28]   Metabolic Engineering of Cupriavidus necator H16 for Sustainable Biofuels from CO2 [J].
Panich, Justin ;
Fong, Bonnie ;
Singer, Steven W. .
TRENDS IN BIOTECHNOLOGY, 2021, 39 (04) :412-424
[29]   Salmon provides fast and bias-aware quantification of transcript expression [J].
Patro, Rob ;
Duggal, Geet ;
Love, Michael I. ;
Irizarry, Rafael A. ;
Kingsford, Carl .
NATURE METHODS, 2017, 14 (04) :417-+
[30]   A novel NO-responding regulator controls the reduction of nitric oxide in Ralstonia eutropha [J].
Pohlmann, A ;
Cramm, R ;
Schmelz, K ;
Friedrich, B .
MOLECULAR MICROBIOLOGY, 2000, 38 (03) :626-638