Engineering xylose utilization in Cupriavidus necator for enhanced poly (3-hydroxybutyrate) production from mixed sugars

被引:2
作者
Lee, So Jeong [1 ]
Kim, Jiwon [1 ]
Ahn, Jung Ho [1 ,2 ]
Gong, Gyeongtaek [1 ,2 ]
Um, Youngsoon [1 ,2 ]
Lee, Sun-Mi [3 ]
Kim, Kyoung Heon [4 ]
Ko, Ja Kyong [1 ,2 ]
机构
[1] Korea Inst Sci & Technol KIST, Clean Energy Res Ctr, Seoul 02792, South Korea
[2] Univ Sci & Technol, KIST Sch, Div Energy & Environm Technol, Seoul 02792, South Korea
[3] Korea Univ, Dept Environm Sci & Ecol Engn, Seoul 02841, South Korea
[4] Korea Univ, Dept Biotechnol, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
Biodegradable polymer; Metabolic engineering; Lignocellulosic sugar; Xylose isomerase pathway; Weimberg pathway; ESCHERICHIA-COLI; DAHMS PATHWAY; NITRIC-OXIDE; OPTIMIZATION; METABOLISM; H16;
D O I
10.1016/j.biortech.2024.131996
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Lignocellulosic biomass is a promising renewable feedstock for biodegradable plastics like polyhydroxyalkanoates (PHAs). Cupriavidus necator, a versatile microbial host that synthesizes poly(3hydroxybutyrate) (PHB), the most abundant type of PHA, has been studied to expand its carbon source utilization. Since C. necator NCIMB11599 cannot metabolize xylose, we developed xylose-utilizing strains by introducing synthetic xylose metabolic pathways, including the xylose isomerase, Weimberg, and Dahms pathways. Through rational and evolutionary engineering, the RXI22 and RXW62 strains were able to efficiently utilize xylose as the sole carbon source, producing 64.2 wt% (wt%) and 61.4 wt% PHB, respectively. Among the engineered strains, the xylose isomerase-based RXI22 strain demonstrated the most efficient co-fermentation performance, with a PHB content of 75.7 wt% and a yield of 0.32 (g PHB/g glucose and xylose) from mixed sugars. The strains developed in this study represent an enhanced PHA producer, offering a sustainable route for converting lignocellulosic biomass into bioplastics.
引用
收藏
页数:12
相关论文
共 48 条
[1]   OCCURRENCE, METABOLISM, METABOLIC ROLE, AND INDUSTRIAL USES OF BACTERIAL POLYHYDROXYALKANOATES [J].
ANDERSON, AJ ;
DAWES, EA .
MICROBIOLOGICAL REVIEWS, 1990, 54 (04) :450-472
[2]   Understanding D-xylonic acid accumulation: a cornerstone for better metabolic engineering approaches [J].
Banares, Angelo B. ;
Nisola, Grace M. ;
Valdehuesa, Kris Nino G. ;
Lee, Won-Keun ;
Chung, Wook-Jin .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2021, 105 (13) :5309-5324
[3]   SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing [J].
Bankevich, Anton ;
Nurk, Sergey ;
Antipov, Dmitry ;
Gurevich, Alexey A. ;
Dvorkin, Mikhail ;
Kulikov, Alexander S. ;
Lesin, Valery M. ;
Nikolenko, Sergey I. ;
Son Pham ;
Prjibelski, Andrey D. ;
Pyshkin, Alexey V. ;
Sirotkin, Alexander V. ;
Vyahhi, Nikolay ;
Tesler, Glenn ;
Alekseyev, Max A. ;
Pevzner, Pavel A. .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2012, 19 (05) :455-477
[4]   RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes [J].
Brettin, Thomas ;
Davis, James J. ;
Disz, Terry ;
Edwards, Robert A. ;
Gerdes, Svetlana ;
Olsen, Gary J. ;
Olson, Robert ;
Overbeek, Ross ;
Parrello, Bruce ;
Pusch, Gordon D. ;
Shukla, Maulik ;
Thomason, James A., III ;
Stevens, Rick ;
Vonstein, Veronika ;
Wattam, Alice R. ;
Xia, Fangfang .
SCIENTIFIC REPORTS, 2015, 5
[5]   Engineering Escherichia coli for glycolic acid production from D-xylose through the Dahms pathway and glyoxylate bypass [J].
Cabulong, Rhudith B. ;
Lee, Won-Keun ;
Banares, Angelo B. ;
Ramos, Kristine Rose M. ;
Nisola, Grace M. ;
Valdehuesa, Kris Nino G. ;
Chung, Wook-Jin .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2018, 102 (05) :2179-2189
[6]   Enhanced yield of ethylene glycol production from D-xylose by pathway optimization in Escherichia coli [J].
Cabulong, Rhudith B. ;
Valdehuesa, Kris Nino G. ;
Ramos, Kristine Rose M. ;
Nisola, Grace M. ;
Lee, Won-Keun ;
Lee, Chang Ro ;
Chung, Wook-Jin .
ENZYME AND MICROBIAL TECHNOLOGY, 2017, 97 :11-20
[7]   Engineering the xylose-catabolizing Dahms pathway for production of poly(d-lactate-co-glycolate) and poly(d-lactate-co-glycolate-co-d-2-hydroxybutyrate) in Escherichia coli [J].
Choi, So Young ;
Kim, Won Jun ;
Yu, Seung Jung ;
Park, Si Jae ;
Im, Sung Gap ;
Lee, Sang Yup .
MICROBIAL BIOTECHNOLOGY, 2017, 10 (06) :1353-1364
[8]   Two isofunctional nitric oxide reductases in Alcaligenes eutrophus H16 [J].
Cramm, R ;
Siddiqui, RA ;
Friedrich, B .
JOURNAL OF BACTERIOLOGY, 1997, 179 (21) :6769-6777
[9]  
DAHMS AS, 1982, METHOD ENZYMOL, V90, P269
[10]  
Deatherage DE, 2014, METHODS MOL BIOL, V1151, P165, DOI 10.1007/978-1-4939-0554-6_12