Poly(Vinylidene Fluoride-co-Hexafluoropropylene) Matrix Nanocomposites Reinforced With Various Types of BaTiO3 Nanoparticles for Flexible Energy Storage Applications

被引:1
作者
Koroglu, Levent [1 ,2 ]
Tubio, Carmen R. [2 ]
Costa, Carlos M. [3 ,4 ,5 ]
Ayas, Erhan [1 ]
Lanceros-Mendez, Senentxu [2 ,3 ,4 ,6 ]
Ay, Nuran [1 ]
机构
[1] Eskisehir Tech Univ, Dept Mat Sci & Engn, Eskisehir, Turkiye
[2] UPV EHU Sci Pk, Basque Ctr Mat Applicat & Nanostruct, BCMaterials, Leioa, Spain
[3] Univ Minho, Phys Ctr Minho & Porto Univ CF UM UP, Braga, Portugal
[4] Univ Minho, Lab Phys Mat & Emergent Technol LapMET, Braga, Portugal
[5] Univ Minho, Inst Sci & Innovat Biosustainabil IB S, Braga, Portugal
[6] IKERBASQUE Basque Fdn Sci, Bilbao, Spain
关键词
DIELECTRIC-PROPERTIES; POLYVINYLIDENE FLUORIDE; POLYMER NANOCOMPOSITES; BREAKDOWN STRENGTH; PERFORMANCE; DENSITY; MORPHOLOGY; PHASE; CRYSTALLINITY; CONDUCTIVITY;
D O I
10.1002/app.56729
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Poly(vinylidene fluoride-co-hexafluoropropylene), (PVDF-HFP), matrix nanocomposites have been prepared by solution casting, reinforced with BaTiO3 nanoparticles (BT NPs) and surface modified BT NPs (BT-VTS NPs) with a silane coupling agent (VTS) by 0, 5, 15, and 25 wt.%. The effects of filler content and surface modification of nanofillers on the microstructure development, phase evolution, crystallization behavior, and dielectric properties of the nanocomposites are investigated. Furthermore, the energy storage performance of BT-VTS-reinforced nanocomposites is evaluated. The surface modification of BT NPs presents some advantages: it prevents aggregation, restricts interface polarization, and keeps dielectric loss of the nanocomposites low as the relative permittivities rise with filler content. 25% BT-VTS-reinforced nanocomposites with a beta-phase fraction of 45% and a crystallinity of 14% provide a higher relative permittivity (22. at 1 kHz) than that of the neat PVDF-HFP thin films (11). Moreover, they present a low loss tangent (0.043) as the neat thin films (0.042). 25% BT-VTS/PVDF-HFP nanocomposites demonstrate a discharged energy density of 4.8 J cm-3 at 220 MV m-1 with a charge-discharge efficiency of 26%. Consequently, the energy density of the neat PVDF-HFP thin films (3.4 J cm-3 at 238 MV m-1) is improved by 40% after the addition of 25% BT-VTS NPs.
引用
收藏
页数:12
相关论文
共 76 条
[21]  
GREGORIO R, 1994, J POLYM SCI POL PHYS, V32, P859, DOI 10.1002/polb.1994.090320509
[22]   Significantly enhanced breakdown strength and energy density in sandwich-structured nanocomposites with low-level BaTiO3 nanowires [J].
Guo, Ru ;
Luo, Hang ;
Yan, Mingyang ;
Zhou, Xuefan ;
Zhou, Kechao ;
Zhang, Dou .
NANO ENERGY, 2021, 79
[23]   Interface structure, precursor rheology and dielectric properties of BaTiO3/PVDF-hfp nanocomposite films prepared from colloidal perovskite nanoparticles [J].
Hao, Y. N. ;
Bi, K. ;
O'Brien, S. ;
Wang, X. X. ;
Lombardi, J. ;
Pearsall, F. ;
Li, W. L. ;
Lei, M. ;
Wu, Y. ;
Li, L. T. .
RSC ADVANCES, 2017, 7 (52) :32886-32892
[24]  
Iijima M, 2009, KONA POWDER PART J, P119
[25]   Surface modification of BaTiO3 particles by silane coupling agents in different solvents and their effect on dielectric properties of BaTiO3/epoxy composites [J].
Iijima, Motoyuki ;
Sato, Nobuhiro ;
Lenggoro, I. Wuled ;
Kamiya, Hidehiro .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2009, 352 (1-3) :88-93
[26]   Ultrahigh efficiency and enhanced discharge energy density at low loading of nanofiller in trilayered polyvinylidene fluoride-Ba0.8Sr0.2TiO3 nanocomposites [J].
Jaidka, Sachin ;
Singh, Dwijendra P. .
POLYMER COMPOSITES, 2024, 45 (05) :4561-4572
[27]   Ultrahigh Breakdown Strength and Improved Energy Density of Polymer Nanocomposites with Gradient Distribution of Ceramic Nanoparticles [J].
Jiang, Yanda ;
Zhang, Xin ;
Shen, Zhonghui ;
Li, Xinhui ;
Yan, Jingjing ;
Li, Bao-Wen ;
Nan, Ce-Wen .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (04)
[28]   Enhanced dielectric properties of polymer matrix composites with BaTiO3 and MWCNT hybrid fillers using simple phase separation [J].
Jin, Youngho ;
Xia, Ning ;
Gerhardt, Rosario A. .
NANO ENERGY, 2016, 30 :407-416
[29]   Advances in the study of piezoelectric polymers [J].
Kaczmarek, H. ;
Krolikowski, B. ;
Klimiec, E. ;
Chylinska, M. ;
Bajer, D. .
RUSSIAN CHEMICAL REVIEWS, 2019, 88 (07) :749-774
[30]  
Kasap S. O., 2006, Principles of Electronic Materials and Devices, Vv.2