Error analysis of an ADI scheme for the two-dimensional fractal mobile/immobile transport equation with weakly singular solutions

被引:2
作者
Liu, Weizhi [1 ]
Chen, Hu [1 ]
Zaky, Mahmoud [2 ,3 ]
机构
[1] Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R China
[2] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, Riyadh, Saudi Arabia
[3] Natl Res Ctr, Dept Appl Math, Cairo 12622, Egypt
基金
中国国家自然科学基金;
关键词
ADI scheme; Mobile/immobile transport equation; Stability; Convergence; TIME;
D O I
10.1016/j.apnum.2024.12.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we consider a numerical approximation for the two-dimensional fractal mobile/immobile transport equation with weakly singular solutions, where the time first-order derivative is discretized by the backward Euler method, and the Caputo fractional derivative is approximated by the L1 scheme on a uniform mesh. The fully discrete ADI scheme is established by adding a high-order term. The stability and the convergence analyses of the fully discrete ADI scheme are analyzed in L 2-norm and H 1-norm. The numerical results show that the error estimates are sharp.
引用
收藏
页码:113 / 122
页数:10
相关论文
共 20 条
[1]   A simple and efficient random walk solution of multi-rate mobile/immobile mass transport equations [J].
Benson, David A. ;
Meerschaert, Mark M. .
ADVANCES IN WATER RESOURCES, 2009, 32 (04) :532-539
[2]   Using Complete Monotonicity to Deduce Local Error Estimates for Discretisations of a Multi-Term Time-Fractional Diffusion Equation [J].
Chen, Hu ;
Stynes, Martin .
COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2022, 22 (01) :15-29
[3]   An α-robust finite element method for a multi-term time-fractional diffusion problem [J].
Huang, Chaobao ;
Stynes, Martin ;
Chen, Hu .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 389
[4]   An ADI compact difference scheme for the two-dimensional semilinear time-fractional mobile-immobile equation [J].
Jiang, Huifa ;
Xu, Da ;
Qiu, Wenlin ;
Zhou, Jun .
COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (04)
[5]   Convergence analysis of a L1-ADI scheme for two-dimensional multiterm reaction-subdiffusion equation [J].
Jiang, Yubing ;
Chen, Hu .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (06)
[6]   SHARP POINTWISE-IN-TIME ERROR ESTIMATE OF L1 SCHEME FOR NONLINEAR SUBDIFFUSION EQUATIONS [J].
Li, Dongfang ;
Qin, Hongyu ;
Zhang, Jiwei .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2024, 42 (03) :662-678
[7]   A RBF meshless approach for modeling a fractal mobile/immobile transport model [J].
Liu, Q. ;
Liu, F. ;
Turner, I. ;
Anh, V. ;
Gu, Y. T. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 226 :336-347
[8]   Jacobi Spectral Collocation Method for the Time Variable-Order Fractional Mobile-Immobile Advection-Dispersion Solute Transport Model [J].
Ma, Heping ;
Yang, Yubo .
EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2016, 6 (03) :337-352
[9]   Fractal mobile/immobile solute transport [J].
Schumer, R ;
Benson, DA ;
Meerschaert, MM ;
Baeumer, B .
WATER RESOURCES RESEARCH, 2003, 39 (10) :SBH131-SBH1312
[10]  
Stynes M., 2019, Handbook of Fractional Calculus with Applications, V3, P287