Existence and stability of time periodic solutions to nonlinear elastic wave equations with viscoelastic terms

被引:0
作者
Kagei, Yoshiyuki [1 ,3 ]
Takeda, Hiroshi [2 ]
机构
[1] Tokyo Inst Technol, Dept Math, Meguro Ku, Tokyo 1528551, Japan
[2] Fukuoka Univ, Fac Sci, Dept Appl Math, Jonan Ku, Fukuoka 8140180, Japan
[3] Inst Sci Tokyo, Dept Math, Meguro Ku, Tokyo 1528551, Japan
关键词
Nonlinear elastic wave equation; Damping terms; Time periodic solution; Stability; GLOBAL EXISTENCE; DECAY;
D O I
10.1016/j.jde.2025.01.092
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper studies a nonlinear viscoelastic equation with a time periodic external force on the three dimensional whole space. The existence of a time periodic solution is proved by using a spectral decomposition and the Poincar & eacute; map when the external force is small enough. Based on the regularity estimates of the time periodic solution derived from the smoothing effect of the semigroup, a stability result is obtained with time decay estimates of perturbations. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:478 / 509
页数:32
相关论文
共 16 条
  • [1] Agemi R., Global existence of nonlinear elastic waves, Invent. Math., 142, pp. 225-250, (2000)
  • [2] Cazenave T., Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10, (2003)
  • [3] Grafakos L., Classical Fourier Analysis, Graduate Texts in Mathematics, 249, (2008)
  • [4] Hoff D., Zumbrun K., Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indiana Univ. Math. J., 44, pp. 603-676, (1995)
  • [5] Hoff D., Zumbrun K., Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves, Z. Angew. Math. Phys., 48, pp. 597-614, (1997)
  • [6] Jonov B., Sideris T.C., Global and almost global existence of small solutions to a dissipative wave equation in 3D with nearly null nonlinear terms, Commun. Pure Appl. Anal., 14, pp. 1407-1442, (2015)
  • [7] Kagei Y., Takeda H., Smoothing effect and large time behavior of solutions to nonlinear elastic wave equations with viscoelastic term, Nonlinear Anal., 219, (2022)
  • [8] Kagei Y., Takeda H., Decay estimates of solutions to nonlinear elastic wave equations with viscoelastic terms in the framework of L<sup>p</sup>-Sobolev spaces, J. Math. Anal. Appl., 519, (2023)
  • [9] Kagei Y., Tsuda K., Existence and stability of time periodic solution to the compressible Navier-Stokes equation for time periodic external force with symmetry, J. Differ. Equ., 258, pp. 399-444, (2015)
  • [10] Klainerman S., Sideris T.C., On almost global existence for nonrelativistic wave equations in 3D, Commun. Pure Appl. Math., 49, pp. 307-321, (1996)