Polynomial convergence rate for quasi-periodic homogenization of Hamilton-Jacobi equations and application to ergodic estimates

被引:0
作者
Hu, Bingyang [1 ]
Tu, Son N. T. [2 ]
Zhang, Jianlu [3 ,4 ]
机构
[1] Auburn Univ, Dept Math & Stat, Auburn, AL USA
[2] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[3] Chinese Acad Sci, Acad Math & Syst Sci, Hua Loo Keng Key Lab Math, Beijing, Peoples R China
[4] Chinese Acad Sci, Math Inst, Acad Math & Syst Sci, Beijing, Peoples R China
基金
国家重点研发计划;
关键词
Hamilton-Jacobi equations; homogenization; quasi-periodic function; rate of convergence; viscosity solutions; STOCHASTIC HOMOGENIZATION; VISCOSITY SOLUTIONS;
D O I
10.1080/03605302.2024.2446459
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we demonstrate a polynomial convergence rate for homogenization of Hamilton-Jacobi equations with quasi-periodic potentials. We establish a connection between the convergence rate of homogenization and the regularity of the effective Hamiltonian, by using a new quantitative ergodic estimate for bounded quasi-periodic functions with Diophantine frequencies. As an application, we also study the convergent rate for Birkhoff average of unbounded quasi-periodic functions.
引用
收藏
页码:211 / 244
页数:34
相关论文
共 43 条