Identifying Candidate Genes Related to Soybean (Glycine max) Seed Coat Color via RNA-Seq and Coexpression Network Analysis

被引:0
|
作者
Wang, Cheng [1 ]
Fu, Pingchun [2 ]
Sun, Tingting [1 ]
Wang, Yan [2 ]
Li, Xueting [1 ]
Lan, Shulin [1 ]
Liu, Hui [1 ]
Gou, Yongji [2 ]
Shang, Qiaoxia [2 ]
Li, Weiyu [1 ]
机构
[1] Beijing Univ Agr, Coll Plant Sci & Technol, Natl Demonstrat Ctr Expt Plant Prod Educ, Beijing Key Lab New Agr Technol Agr Applicat, Beijing 102206, Peoples R China
[2] Beijing Univ Agr, Key Lab Northern Urban Agr, Minist Agr & Rural Affairs, Beijing 102206, Peoples R China
关键词
<italic>Glycine max</italic>; seed coat color; RNA-seq; candidate genes; ANTHOCYANIN PIGMENTATION; PHOTORECEPTORS; PLANTS; MYBL2;
D O I
10.3390/genes16010044
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: The quality of soybeans is reflected in the seed coat color, which indicates soybean quality and commercial value. Researchers have identified genes related to seed coat color in various plants. However, research on the regulation of genes related to seed coat color in soybeans is rare. Methods: In this study, four lines of seed coats with different colors (medium yellow 14, black, green, and brown) were selected from the F2:5 population, with Beinong 108 as the female parent and green bean as the male parent, and the dynamic changes in the anthocyanins in the seed coat were stained with 4-dimethylaminocinnamaldehyde (DMACA) during the grain maturation process (20 days from grain drum to seed harvest). Through RNA-seq of soybean lines with four different colored seed coats at 30 and 50 days after seeding, we can further understand the key pathways and gene regulation modules between soybean seed coats of different colors. Results: DMACA revealed that black seed coat soybeans produce anthocyanins first and have the deepest staining. Clustering and principal component analysis (PCA) of the RNA-seq data divided the eight samples into two groups, resulting in 16,456 DEGs, including 5359 TFs. GO and KEGG enrichment analyses revealed that the flavonoid biosynthesis, starch and sucrose metabolism, carotenoid biosynthesis, and circadian rhythm pathways were significantly enriched. We also conducted statistical and expression pattern analyses on the differentially expressed transcription factors. Based on weighted gene coexpression network analysis (WGCNA), we identified seven specific modules that were significantly related to the four soybean lines with different seed coat colors. The connectivity and functional annotation of genes within the modules were calculated, and 21 candidate genes related to soybean seed coat color were identified, including six transcription factor (TF) genes and three flavonoid pathway genes. Conclusions: These findings provide a theoretical basis for an in-depth understanding of the molecular mechanisms underlying differences in soybean seed coat color and provide new genetic resources.
引用
收藏
页数:19
相关论文
共 50 条
  • [11] Identification and Analysis of NaHCO3 Stress Responsive Genes in Wild Soybean (Glycine soja) Roots by RNA-seq
    Zhang, Jinlong
    Wang, Jiaxue
    Jiang, Wei
    Liu, Juge
    Yang, Songnan
    Gai, Junyi
    Li, Yan
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [12] Transcriptome analysis of Brassica napus pod using RNA-Seq and identification of lipid-related candidate genes
    Xu, Hai-Ming
    Kong, Xiang-Dong
    Chen, Fei
    Huang, Ji-Xiang
    Lou, Xiang-Yang
    Zhao, Jian-Yi
    BMC GENOMICS, 2015, 16
  • [13] TRANSCRIPTOME ANALYSIS OF GENES INVOLVED IN FLOWER AND LEAF COLOR OF Oncidium BY RNA-SEQ
    Wang, Ma-Yin
    Ding, Yu
    Zhang, Ye
    Sun, Lu
    Song, Xi-Qiang
    Hao, Dai-Cheng
    Li, Wei-Shi
    Tang, Min-Qiang
    Ling, Peng
    Xie, Shang-Qian
    ACTA SCIENTIARUM POLONORUM-HORTORUM CULTUS, 2023, 22 (05): : 3 - 17
  • [14] Transcriptome analysis of Brassica napus pod using RNA-Seq and identification of lipid-related candidate genes
    Hai-Ming Xu
    Xiang-Dong Kong
    Fei Chen
    Ji-Xiang Huang
    Xiang-Yang Lou
    Jian-Yi Zhao
    BMC Genomics, 16
  • [15] Comparative RNA-seq analysis reveals candidate genes associated with fruit set in pumpkin
    Luo, Weirong
    Li, Yaoyao
    Sun, Yongdong
    Lu, Lin
    Zhao, Zhenxiang
    Zhou, Junguo
    Li, Xinzheng
    SCIENTIA HORTICULTURAE, 2021, 288
  • [16] Identification of candidate genes associated with double flowers via integrating BSA-seq and RNA-seq in Brassica napus
    Ma, Xiaowei
    Fan, Liangmiao
    Ye, Shenhua
    Chen, Yanping
    Huang, Yingying
    Wu, Lumei
    Zhao, Lun
    Yi, Bin
    Ma, Chaozhi
    Tu, Jinxing
    Shen, Jinxiong
    Fu, Tingdong
    Wen, Jing
    BMC GENOMICS, 2024, 25 (01):
  • [17] Integrating GWAS, QTL, mapping and RNA-seq to identify candidate genes for seed vigor in rice (Oryza sativa L.)
    Guo, Tao
    Yang, Jing
    Li, Dongxiu
    Sun, Kai
    Luo, Lixin
    Xiao, Wuming
    Wang, Jiafeng
    Liu, Yongzhu
    Wang, Shuai
    Wang, Hui
    Chen, Zhiqiang
    MOLECULAR BREEDING, 2019, 39 (06)
  • [18] Integrating GWAS, QTL, mapping and RNA-seq to identify candidate genes for seed vigor in rice (Oryza sativa L.)
    Tao Guo
    Jing Yang
    Dongxiu Li
    Kai Sun
    Lixin Luo
    Wuming Xiao
    Jiafeng Wang
    Yongzhu Liu
    Shuai Wang
    Hui Wang
    Zhiqiang Chen
    Molecular Breeding, 2019, 39
  • [19] Mining candidate genes associated with resistance to TYLCV in tomato based on BSA-seq and RNA-seq analysis
    Chen, Qingqi
    Jiang, Jingbin
    Zhang, Haixia
    Lei, Na
    Zhao, Tingting
    Li, Jingfu
    EUROPEAN JOURNAL OF HORTICULTURAL SCIENCE, 2020, 85 (03) : 145 - 159
  • [20] Identification of candidate genes for soybean seed coat-related traits using QTL mapping and GWAS
    Yang, Yue
    Zhao, Tiantian
    Wang, Fengmin
    Liu, Luping
    Liu, Bingqiang
    Zhang, Kai
    Qin, Jun
    Yang, Chunyan
    Qiao, Yake
    FRONTIERS IN PLANT SCIENCE, 2023, 14