On the number of solutions of some Frobenius type equations in finite groups

被引:0
作者
Dutta, Parama [1 ]
Kitture, Rahul [2 ]
Prajapati, Sunil Kumar [3 ]
Nath, Rajat Kanti [4 ]
机构
[1] Lakhimpur Girls Coll, Dept Math, Lakhimpur, Assam, India
[2] Indian Inst Technol Jammu, Nagrota, Jammu & Kashmir, India
[3] Indian Inst Technol Bhubaneswar, Sch Basic Sci, Khorda, Odiaha, India
[4] Tezpur Univ, Dept Math Sci, Napaam 784028, Assam, India
关键词
Autocommutator; automorphism; character; commutator; equation; finite group; AUTOMORPHISM FIXES; PROBABILITY; COMMUTATOR; CHARACTERS; ELEMENTS;
D O I
10.1080/00927872.2024.2421393
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group with automorphism group Aut(G) and g is an element of G . For any subgroup H of Aut(G) , define a map xi H:G -> C by xi H(g)=|{(x,alpha)is an element of GxH:[x,alpha]=g}| , where [x,alpha]:=x-1 alpha(x) is called the autocommutator of x and alpha in G. In this paper, we show that xi H is a character of G when H is any subgroup of Aut(G) containing Inn(G) and H=Autcent(G) , where Inn(G) is the inner automorphism group of G and Autcent(G) is the group of all the central automorphisms of G. In these cases expressions for xi H are also obtained in terms of irreducible characters of G. Our results generalize a classical result of Frobenius regarding the number of solutions of the commutator equation in finite groups. As applications of our results, we compute g-autocommuting probabilities of some finite groups and obtained certain bounds for g-autocommuting probability of G in terms of commuting and autocommuting probabilities.
引用
收藏
页码:1713 / 1722
页数:10
相关论文
共 20 条
  • [1] CHARACTERS AND SOLUTIONS TO EQUATIONS IN FINITE GROUPS
    Amit, Alon
    Vishne, Uzi
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2011, 10 (04) : 675 - 686
  • [2] What is the probability an automorphism fixes a group element?
    Arora, Harsha
    Karan, Ram
    [J]. COMMUNICATIONS IN ALGEBRA, 2017, 45 (03) : 1141 - 1150
  • [3] On the commuting probability of p-elements in a finite group
    Burness, Timothy C.
    Guralnick, Robert
    Moreto, Alexander
    Navarro, Gabriel
    [J]. ALGEBRA & NUMBER THEORY, 2023, 17 (06) : 1209 - 1229
  • [4] ON SOLUTIONS OF A CLASS OF EQUATIONS IN A FINITE GROUP
    Das, A. K.
    Nath, R. K.
    [J]. COMMUNICATIONS IN ALGEBRA, 2009, 37 (11) : 3904 - 3911
  • [5] Autocommuting probability of a finite group
    Dutta, Parama
    Nath, Rajat Kanti
    [J]. COMMUNICATIONS IN ALGEBRA, 2018, 46 (03) : 961 - 969
  • [6] ON SOME PROBLEMS OF A STATISTICAL GROUP-THEORY .4.
    ERDOS, P
    TURAN, P
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1968, 19 (3-4): : 413 - &
  • [7] Frobenius F. G., 1968, GESAMMELTE ABH, P1
  • [8] COMMUTATOR MAPS, MEASURE PRESERVATION, AND T-SYSTEMS
    Garion, Shelly
    Shalev, Aner
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (09) : 4631 - 4651
  • [9] On the Probability That an Automorphism Fixes a Group Element
    Goyal, Ashish
    Kalra, Hemant
    Gumber, Deepak
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2019, 126 (08) : 748 - 753
  • [10] THE ABSOLUTE CENTER OF A GROUP
    HEGARTY, P
    [J]. JOURNAL OF ALGEBRA, 1994, 169 (03) : 929 - 935