A new approach for the regularity of weak solutions of the 3D Boussinesq system

被引:0
作者
Chamorro, Diego [1 ]
Mindrila, Claudiu [2 ]
机构
[1] Univ Paris Saclay, Univ Evry, LaMME, CNRS, F-91025 Evry, France
[2] Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague, 18675, Czech Republic
关键词
Boussinesq equations; regularity theory; Morrey spaces; EQUATIONS;
D O I
10.1088/1361-6544/ad4504
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We address here the problem of regularity for weak solutions of the 3D Boussinesq equation. By introducing the new notion of partial suitable solutions, which imposes some conditions over the velocity field only, we show a local gain of regularity for the two variables u -> and theta.
引用
收藏
页数:41
相关论文
共 21 条
[1]   Morrey spaces in harmonic analysis [J].
Adams, David R. ;
Xiao, Jie .
ARKIV FOR MATEMATIK, 2012, 50 (02) :201-230
[2]   LARGE TIME DECAY AND GROWTH FOR SOLUTIONS OF A VISCOUS BOUSSINESQ SYSTEM [J].
Brandolese, Lorenzo ;
Schonbek, Maria E. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (10) :5057-5090
[3]   Gagliardo-Nirenberg inequalities and non-inequalities: The full story [J].
Brezis, Haim ;
Mironescu, Petru .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (05) :1355-1376
[4]  
Brezis H, 2011, UNIVERSITEXT, P349, DOI 10.1007/978-0-387-70914-7_11
[5]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[6]  
Cannon J.R., 1980, Lecture Notes in Math, V771, P129, DOI DOI 10.1007/BFB0086903
[7]   Global regularity for the 2D Boussinesq equations with partial viscosity terms [J].
Chae, Dongho .
ADVANCES IN MATHEMATICS, 2006, 203 (02) :497-513
[8]   The Leray and Fujita-Kato theorems for the Boussinesq system with partial viscosity [J].
Danchin, Raphael ;
Paicu, Marius .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2008, 136 (02) :261-309
[9]   A note on regularity criterion for the 3D Boussinesq system with partial viscosity [J].
Fan, Jishan ;
Zhou, Yong .
APPLIED MATHEMATICS LETTERS, 2009, 22 (05) :802-805
[10]   Global Regularity for 2D Boussinesq Temperature Patches with No Diffusion [J].
Gancedo F. ;
García-Juárez E. .
Annals of PDE, 3 (2)