Some domination parameters in Cayley graphs of a commutative ring

被引:0
作者
Midhun, S. [1 ]
Pilakkat, Raji [2 ]
机构
[1] Govt Polytech Coll, Punalur Kollam 691305, Kerala, India
[2] Univ Calicut, Dept Math, Malappuram 673635, Kerala, India
关键词
Domination; bondage number; Cayley graphs;
D O I
10.1142/S1793830924501301
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H be a group and S subset of H be a set of group elements such that the identity element e is not an element of S and S = S-1. The Cayley graph Cay(H,S) associated with (H,S) is an undirected graph with a vertex set equal to H and two vertices g, h is an element of H are adjacent, whenever gh(-1) is an element of S. Let R be a commutative ring with unity. R+ and Z*(R) are the additive group and the set of all non-zero zero-divisors of R, respectively. The symbol CAY(R) denotes the Cayley graph Cay(R+, Z*(R)) and GR represents the unitary Cayley graph Cay(R+, U(R)). In this study, the total domination number, perfect domination number and bondage number for CAY(R) and G(R) have been found. Moreover, we establish the relationship between the total domination number of G(R) and the number of prime ideals in R. Additionally, we identify all finite commutative rings with unity R where the perfect domination number of CAY(R) is equal to |R|.
引用
收藏
页数:12
相关论文
共 8 条
[1]   SOME PROPERTIES OF A CAYLEY GRAPH OF A COMMUTATIVE RING [J].
Aalipour, G. ;
Akbari, S. .
COMMUNICATIONS IN ALGEBRA, 2014, 42 (04) :1582-1593
[2]   Impact of comorbidities and treatment burden on general well-being among women's cancer survivors [J].
Anderson, R. T. ;
Eton, D. T. ;
Camacho, F. T. ;
Kennedy, E. M. ;
Brenin, C. M. ;
DeGuzman, P. B. ;
Carter, K. F. ;
Guterbock, T. ;
Ruddy, K. J. ;
Cohn, W. F. .
JOURNAL OF PATIENT-REPORTED OUTCOMES, 2021, 5 (01)
[3]  
Bini G., 2002, Finite commutative rings and their applications, DOI [10.1007/978-1-4615-0957-8, DOI 10.1007/978-1-4615-0957-8]
[4]   Unitary Cayley graphs whose Roman domination numbers are at most four [J].
Chin, A. Y. M. ;
Maimani, H. R. ;
Pournaki, M. R. ;
Sivagami, M. ;
Tamizh Chelvam, T. .
AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (01) :36-40
[5]   THE BONDAGE NUMBER OF A GRAPH [J].
FINK, JF ;
JACOBSON, MS ;
KINCH, LF ;
ROBERTS, J .
DISCRETE MATHEMATICS, 1990, 86 (1-3) :47-57
[6]   Domination number of graphs associated with rings [J].
Hashemi, Ebrahim ;
Abdi, Mona ;
Alhevaz, Abdollah ;
Su, Huadong .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (01)
[7]  
Haynes T., 1998, FUNDAMENTALS DOMINAT, DOI 10.1201/9781482246582
[8]   Domination number of unit graph of Zn [J].
Su, Huadong ;
Yang, Liying .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2020, 12 (05)