An autoencoder for compressing angle-resolved photoemission spectroscopy data

被引:0
作者
Agustsson, Steinn ymir [1 ]
Haque, Mohammad Ahsanul [2 ]
Truong, Thi Tam [2 ]
Bianchi, Marco [1 ]
Klyuchnikov, Nikita
Mottin, Davide [2 ]
Karras, Panagiotis [2 ]
Hofmann, Philip [1 ]
机构
[1] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus, Denmark
[2] Aarhus Univ, Dept Comp Sci, DK-8000 Aarhus C, Denmark
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2025年 / 6卷 / 01期
关键词
autoencoder; angle-resolved photoemission spectroscopy; data compression; EPITAXIAL GRAPHENE; SURFACE;
D O I
10.1088/2632-2153/ada8f2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Angle-resolved photoemission spectroscopy (ARPES) is a powerful experimental technique to determine the electronic structure of solids. Advances in light sources for ARPES experiments are currently leading to a vast increase of data acquisition rates and data quantity. On the other hand, access time to the most advanced ARPES instruments remains strictly limited, calling for fast, effective, and on-the-fly data analysis tools to exploit this time. In response to this need, we introduce ARPESNet, a versatile autoencoder network that efficiently summmarises and compresses ARPES datasets. We train ARPESNet on a large and varied dataset of 2-dimensional ARPES data extracted by cutting standard 3-dimensional ARPES datasets along random directions in k. To test the data representation capacity of ARPESNet, we compare k-means clustering quality between data compressed by ARPESNet, data compressed by discrete cosine transform, and raw data, at different noise levels. ARPESNet data excels in clustering quality despite its high compression ratio.
引用
收藏
页数:11
相关论文
共 48 条
[21]   ANGLE-RESOLVED PHOTOEMISSION DETERMINATION OF THE BAND-STRUCTURE AND MULTIELECTRON EXCITATIONS IN NI [J].
EBERHARDT, W ;
PLUMMER, EW .
PHYSICAL REVIEW B, 1980, 21 (08) :3245-3255
[22]   Electron-phonon coupling at surfaces and interfaces [J].
Hofmann, Ph ;
Sklyadneva, I. Yu ;
Rienks, E. D. L. ;
Chulkov, E. V. .
NEW JOURNAL OF PHYSICS, 2009, 11
[23]   Accessing the spectral function of in operando devices by angle-resolved photoemission spectroscopy [J].
Hofmann, Philip .
AVS QUANTUM SCIENCE, 2021, 3 (02)
[24]   Observation and origin of the Δ manifold in Si:P δ layers [J].
Holt, Ann Julie ;
Mahatha, Sanjoy K. ;
Stan, Raluca-Maria ;
Strand, Frode S. ;
Nyborg, Thomas ;
Curcio, Davide ;
Schenk, Alex K. ;
Cooil, Simon P. ;
Bianchi, Marco ;
Wells, Justin W. ;
Hofmann, Philip ;
Miwa, Jill A. .
PHYSICAL REVIEW B, 2020, 101 (12)
[25]   Electronic properties of single-layer CoO2/Au(111) [J].
Holt, Ann Julie U. ;
Pakdel, Sahar ;
Rodriguez-Fernandez, Jonathan ;
Zhang, Yu ;
Curcio, Davide ;
Sun, Zhaozong ;
Lacovig, Paolo ;
Yao, Yong-Xin ;
Lauritsen, Jeppe, V ;
Lizzit, Silvano ;
Lanata, Nicola ;
Hofmann, Philip ;
Bianchi, Marco ;
Sanders, Charlotte E. .
2D MATERIALS, 2021, 8 (03)
[26]  
Huang DC, 2024, Arxiv, DOI arXiv:2402.18830
[27]   Unsupervised clustering for identifying spatial inhomogeneity on local electronic structures [J].
Iwasawa, Hideaki ;
Ueno, Tetsuro ;
Masui, Takahiko ;
Tajima, Setsuko .
NPJ QUANTUM MATERIALS, 2022, 7 (01)
[28]   Data clustering: A review [J].
Jain, AK ;
Murty, MN ;
Flynn, PJ .
ACM COMPUTING SURVEYS, 1999, 31 (03) :264-323
[29]  
Kaiming H., 2018, Biochemical and Biophysical Research Communications, V498, P254, DOI DOI 10.1016/J.BBRC.2018.01.076
[30]   Deep learning-based statistical noise reduction for multidimensional spectral data [J].
Kim, Younsik ;
Oh, Dongjin ;
Huh, Soonsang ;
Song, Dongjoon ;
Jeong, Sunbeom ;
Kwon, Junyoung ;
Kim, Minsoo ;
Kim, Donghan ;
Ryu, Hanyoung ;
Jung, Jongkeun ;
Kyung, Wonshik ;
Sohn, Byungmin ;
Lee, Suyoung ;
Hyun, Jounghoon ;
Lee, Yeonghoon ;
Kim, Yeongkwan ;
Kim, Changyoung .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2021, 92 (07)