An autoencoder for compressing angle-resolved photoemission spectroscopy data

被引:0
作者
Agustsson, Steinn ymir [1 ]
Haque, Mohammad Ahsanul [2 ]
Truong, Thi Tam [2 ]
Bianchi, Marco [1 ]
Klyuchnikov, Nikita
Mottin, Davide [2 ]
Karras, Panagiotis [2 ]
Hofmann, Philip [1 ]
机构
[1] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus, Denmark
[2] Aarhus Univ, Dept Comp Sci, DK-8000 Aarhus C, Denmark
来源
MACHINE LEARNING-SCIENCE AND TECHNOLOGY | 2025年 / 6卷 / 01期
关键词
autoencoder; angle-resolved photoemission spectroscopy; data compression; EPITAXIAL GRAPHENE; SURFACE;
D O I
10.1088/2632-2153/ada8f2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Angle-resolved photoemission spectroscopy (ARPES) is a powerful experimental technique to determine the electronic structure of solids. Advances in light sources for ARPES experiments are currently leading to a vast increase of data acquisition rates and data quantity. On the other hand, access time to the most advanced ARPES instruments remains strictly limited, calling for fast, effective, and on-the-fly data analysis tools to exploit this time. In response to this need, we introduce ARPESNet, a versatile autoencoder network that efficiently summmarises and compresses ARPES datasets. We train ARPESNet on a large and varied dataset of 2-dimensional ARPES data extracted by cutting standard 3-dimensional ARPES datasets along random directions in k. To test the data representation capacity of ARPESNet, we compare k-means clustering quality between data compressed by ARPESNet, data compressed by discrete cosine transform, and raw data, at different noise levels. ARPESNet data excels in clustering quality despite its high compression ratio.
引用
收藏
页数:11
相关论文
共 48 条
[1]  
Agustsson S Y., 2024, ARPESNet GitHub
[2]  
Agustsson Steinn Ymir, 2024, Zenodo, DOI 10.5281/ZENODO.12665275
[3]  
Agustsson Steinn Ymir, 2024, Zenodo, DOI 10.5281/ZENODO.12648783
[4]   Autonomous micro-focus angle-resolved photoemission spectroscopy [J].
Agustsson, Steinn ymir ;
Jones, Alfred J. H. ;
Curcio, Davide ;
Ulstrup, Soren ;
Miwa, Jill ;
Mottin, Davide ;
Karras, Panagiotis ;
Hofmann, Philip .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2024, 95 (05)
[5]   Optuna: A Next-generation Hyperparameter Optimization Framework [J].
Akiba, Takuya ;
Sano, Shotaro ;
Yanase, Toshihiko ;
Ohta, Takeru ;
Koyama, Masanori .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :2623-2631
[6]   Paramagnetic electronic structure of CrSBr: Comparison between ab initio GW theory and angle-resolved photoemission spectroscopy [J].
Bianchi, Marco ;
Acharya, Swagata ;
Dirnberger, Florian ;
Klein, Julian ;
Pashov, Dimitar ;
Mosina, Kseniia ;
Sofer, Zdenek ;
Rudenko, Alexander N. ;
Katsnelson, Mikhail I. ;
van Schilfgaarde, Mark ;
Roesner, Malte ;
Hofmann, Philip .
PHYSICAL REVIEW B, 2023, 107 (23)
[7]   Robust Surface Doping of Bi2Se3 by Rubidium Intercalation [J].
Bianchi, Marco ;
Hatch, Richard C. ;
Li, Zheshen ;
Hofmann, Philip ;
Song, Fei ;
Mi, Jianli ;
Iversen, Bo B. ;
Abd El-Fattah, Zakaria M. ;
Loeptien, Peter ;
Zhou, Lihui ;
Khajetoorians, Alexander A. ;
Wiebe, Jens ;
Wiesendanger, Roland ;
Wells, Justin W. .
ACS NANO, 2012, 6 (08) :7009-7015
[8]   Simultaneous Quantization of Bulk Conduction and Valence States through Adsorption of Nonmagnetic Impurities on Bi2Se3 [J].
Bianchi, Marco ;
Hatch, Richard C. ;
Mi, Jianli ;
Iversen, Bo Brummerstedt ;
Hofmann, Philip .
PHYSICAL REVIEW LETTERS, 2011, 107 (08)
[9]   Coexistence of the topological state and a two-dimensional electron gas on the surface of Bi2Se3 [J].
Bianchi, Marco ;
Guan, Dandan ;
Bao, Shining ;
Mi, Jianli ;
Iversen, Bo Brummerstedt ;
King, Philip D. C. ;
Hofmann, Philip .
NATURE COMMUNICATIONS, 2010, 1
[10]  
Bock H.H., 2007, Selected contributions in data analysis and classification, P161, DOI [DOI 10.1007/978-3-540-73560-1_15, DOI 10.1007/978-3-540-73560-115]