Recommending reaction conditions with label ranking

被引:0
作者
Shim, Eunjae [1 ]
Tewari, Ambuj [2 ,3 ]
Cernak, Tim [1 ,4 ]
Zimmerman, Paul M. [1 ]
机构
[1] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Stat, Ann Arbor, MI 60654 USA
[3] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI USA
[4] Univ Michigan, Dept Med Chem, Ann Arbor, MI 48103 USA
基金
美国国家科学基金会;
关键词
MACHINE; OPTIMIZATION; PREDICTION; TOOL;
D O I
10.1039/d4sc06728b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Pinpointing effective reaction conditions can be challenging, even for reactions with significant precedent. Herein, models that rank reaction conditions are introduced as a conceptually new means for prioritizing experiments, distinct from the mainstream approach of yield regression. Specifically, label ranking, which operates using input features only from substrates, will be shown to better generalize to new substrates than prior models. Evaluation on practical reaction condition selection scenarios - choosing from either 4 or 18 conditions and datasets with or without missing reactions - demonstrates label ranking's utility. Ranking aggregation through Borda's method and relative simplicity are key features of label ranking to achieve consistent high performance.
引用
收藏
页码:4109 / 4118
页数:10
相关论文
共 42 条
[1]   Closed-loop optimization of general reaction conditions for heteroaryl Suzuki-Miyaura coupling [J].
Angello, Nicholas H. ;
Rathore, Vandana ;
Beker, Wiktor ;
Wolos, Agnieszka ;
Jira, Edward R. ;
Roszak, Rafal ;
Wu, Tony C. ;
Schroeder, Charles M. ;
Aspuru-Guzik, Alan ;
Grzybowski, Bartosz A. ;
Burke, Martin D. .
SCIENCE, 2022, 378 (6618) :399-405
[2]   Machine Learning May Sometimes Simply Capture LiteraturePopularity Trends: A Case Study of Heterocyclic Suzuki-MiyauraCoupling [J].
Beker, Wiktor ;
Roszak, Rafal ;
Wolos, Agnieszka ;
Angello, Nicholas H. ;
Rathore, Vandana ;
Burke, Martin D. ;
Grzybowski, Bartosz A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (11) :4819-4827
[3]  
Cheng W., 2010, PROC INT C MACH LEAR, V27, DOI [10.5555/3104322.3104351, DOI 10.5555/3104322.3104351]
[4]  
Cheng W., 2009, PROC INT C MACH LEAR, V26
[5]   Adversarial Controls for Scientific Machine Learning [J].
Chuang, Kangway V. ;
Keiser, Michael J. .
ACS CHEMICAL BIOLOGY, 2018, 13 (10) :2819-2821
[6]   A robotic platform for flow synthesis of organic compounds informed by AI planning [J].
Coley, Connor W. ;
Thomas, Dale A., III ;
Lummiss, Justin A. M. ;
Jaworski, Jonathan N. ;
Breen, Christopher P. ;
Schultz, Victor ;
Hart, Travis ;
Fishman, Joshua S. ;
Rogers, Luke ;
Gao, Hanyu ;
Hicklin, Robert W. ;
Plehiers, Pieter P. ;
Byington, Joshua ;
Piotti, John S. ;
Green, William H. ;
Hart, A. John ;
Jamison, Timothy F. ;
Jensen, Klavs F. .
SCIENCE, 2019, 365 (6453) :557-+
[7]   ROBERT: Bridging the Gap Between Machine Learning and Chemistry [J].
Dalmau, David ;
Alegre-Requena, Juan V. .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2024, 14 (05)
[8]   Chemistry Informer Libraries: Conception, Early Experience, and Role in the Future of Cheminformatics [J].
Dreher, Spencer D. ;
Krska, Shane W. .
ACCOUNTS OF CHEMICAL RESEARCH, 2021, 54 (07) :1586-1596
[9]   Catalysis in medicinal chemistry [J].
Dreher, Spencer D. .
REACTION CHEMISTRY & ENGINEERING, 2019, 4 (09) :1530-1535
[10]   Response to Comment on "Predicting reaction performance in C-N cross-coupling using machine learning" [J].
Estrada, Jesus G. ;
Ahneman, Derek T. ;
Sheridan, Robert P. ;
Dreher, Spencer D. ;
Doyle, Abigail G. .
SCIENCE, 2018, 362 (6416)