Shearless and periodic attractors in the dissipative Labyrinthic map

被引:1
作者
Souza, L. F. B. [1 ]
de Carvalho, R. Egydio [2 ]
Viana, R. L. [3 ]
Caldas, I. L. [1 ]
机构
[1] Univ Sao Paulo, Inst Phys, BR-13506900 Sao Paulo, SP, Brazil
[2] Sao Paulo State Univ, Dept Stat Appl Math & Comp Sci, BR-13506900 Rio Claro, SP, Brazil
[3] Univ Fed Parana, Ctr Interdisciplinar Ciencia Tecnol & Inovacao Nuc, BR-81531990 Curitiba, PR, Brazil
基金
巴西圣保罗研究基金会;
关键词
CHAOTIC ATTRACTORS; RECONNECTION; TRANSPORT; TRANSITION; DYNAMICS; CHAINS;
D O I
10.1063/5.0225577
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Labyrinthic map is a two-dimensional area-preserving map that features a robust transport barrier known as the shearless curve. In this study, we explore a dissipative version of this map, examining how dissipation affects the shearless curve and leads to the emergence of quasi-periodic or chaotic attractors, referred to as shearless attractors. We present a route to chaos of the shearless attractor known as the Curry-Yorke route. To investigate the multi-stability of the system, we employ basin entropy and boundary basin entropy analyses to characterize diverse scenarios. Additionally, we numerically investigate the dynamic periodic structures known as "shrimps" and "Arnold tongues" by varying the parameters of the system.
引用
收藏
页数:13
相关论文
共 48 条
[1]   Cardiac arrhythmias and circle mappings [J].
Arnold, V. I. .
CHAOS, 1991, 1 (01) :20-24
[2]   Dynamics of the kicked logistic map [J].
Baptista, MS ;
Caldas, IL .
CHAOS SOLITONS & FRACTALS, 1996, 7 (03) :325-336
[3]   Destruction and resurgence of the quasiperiodic shearless attractor [J].
Baroni, R. Simile ;
de Carvalho, R. Egydio .
PHYSICAL REVIEW E, 2021, 104 (01)
[4]   UNIVERSALITY AND SELF-SIMILARITY IN THE BIFURCATIONS OF CIRCLE MAPS [J].
BELAIR, J ;
GLASS, L .
PHYSICA D, 1985, 16 (02) :143-154
[5]   Self-similarities in the frequency-amplitude space of a loss-modulated CO2 laser -: art. no. 143905 [J].
Bonatto, C ;
Garreau, JC ;
Gallas, JAC .
PHYSICAL REVIEW LETTERS, 2005, 95 (14)
[6]   Chaos Suppression in a Sine Square Map through Nonlinear Coupling [J].
Brugnago, Eduardo L. ;
Rech, Paulo C. .
CHINESE PHYSICS LETTERS, 2011, 28 (11)
[7]   Amplification of near-resonant signals via stochastic resonance in a chaotic CO2 laser [J].
Chizhevsky, VN ;
Vilaseca, R ;
Corbalán, R .
PHYSICAL REVIEW E, 2000, 61 (06) :6500-6505
[8]   Manifold reconnection in chaotic regimes [J].
Corso, G ;
Rizzato, FB .
PHYSICAL REVIEW E, 1998, 58 (06) :8013-8016
[9]   Basin entropy: a new tool to analyze uncertainty in dynamical systems [J].
Daza, Alvar ;
Wagemakers, Alexandre ;
Georgeot, Bertrand ;
Guery-Odelin, David ;
Sanjuan, Miguel A. F. .
SCIENTIFIC REPORTS, 2016, 6
[10]   An investigation of the parameter space for a family of dissipative mappings [J].
de Oliveira, Juliano A. ;
Montero, Leonardo T. ;
da Costa, Diogo R. ;
Mendez-Bermudez, J. A. ;
Medrano-T, Rene O. ;
Leonel, Edson D. .
CHAOS, 2019, 29 (05)