Auto-generating of 2D tessellated crease patterns of 3D biomimetic spring origami structure

被引:3
作者
Teo, Yu Xing [1 ]
Cai, Catherine Jiayi [1 ]
Yeow, Bok Seng [1 ]
Tse, Zion Tsz Ho [2 ]
Ren, Hongliang [1 ,3 ]
机构
[1] Natl Univ Singapore, Biomed Engn Dept, Singapore 117575, Singapore
[2] Univ York, Dept Elect Engn, York YO10 5DD, England
[3] Chinese Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
来源
BIOMIMETIC INTELLIGENCE AND ROBOTICS | 2022年 / 2卷 / 02期
关键词
Biomimetic soft robotics; 3D origami design; Design automation; Computer-aided design; Structural optimization; Parametric design; DESIGN;
D O I
10.1016/j.birob.2022.100036
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Computational simulations can accelerate the design and modelling of origami robots and mechanisms. This paper presents a computational method using algorithms developed in Python to generate different tessellated origami crease patterns simultaneously. This paper aims to automate this process by introducing a system that automatically generates origami crease patterns in Scalable Vector Graphics format. By introducing different parameters, variations of the same underlying tessellated crease pattern can be obtained. The user interface consists of an input file where the user can input the desired parameters, which are then processed by an algorithm written in Python to generate the respective origami 2D crease patterns. These origami crease patterns can serve as inputs to current origami design software and algorithms to generate origami design models for faster and easier visual comparison. This paper utilizes a basic biomimetic inspiration origami pattern to demonstrate the functionality by varying underlying crease pattern parameters that give rise to symmetric and asymmetric spring origami 3D structures. Furthermore, this paper conducts a qualitative analysis of the origami design outputs of an origami simulator from the input crease patterns and the respective manual folding of the origami structure.
引用
收藏
页数:15
相关论文
共 57 条
[1]  
Achim M., 2011, Computational Design Thinking
[2]   Current Development on Origami/Kirigami-Inspired Structure of Creased Patterns toward Robotics [J].
Ai, Chao ;
Chen, Yuting ;
Xu, Linghui ;
Li, Hong ;
Liu, Chen ;
Shang, Fangfang ;
Xia, Qingchao ;
Zhang, Sheng .
ADVANCED ENGINEERING MATERIALS, 2021, 23 (10)
[3]  
[Anonymous], 2011, Origami Design Secrets: Mathematical Method for an Ancient Art
[4]  
Brown D., 2009, Phys Teach, V47, P145, DOI [10.1119/1.3081296, DOI 10.1119/1.3081296]
[5]   Diversified and Untethered Motion Generation Via Crease Patterning from Magnetically Actuated Caterpillar-Inspired Origami Robot [J].
Cai, Catherine Jiayi ;
Xiao, Xiao ;
Kalairaj, Manivannan Sivaperuman ;
Lee, Ignatius Jia Jun ;
Mugilvannan, Arjun Kesav ;
Yeow, Bok Seng ;
Tan, Jing Han ;
Huang, Hui ;
Ren, Hongliang .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2021, 26 (03) :1678-1688
[6]  
Carta S., 2020, Machine learning and computational design, DOI [10.1145/3401842, DOI 10.1145/3401842]
[7]  
Chandra S., 2015, P S SIM ARCH URB DES
[8]   Soft Origami Gripper with Variable Effective Length [J].
Chen, Bohan ;
Shao, Zhuyin ;
Xie, Zhexin ;
Liu, Jiaqi ;
Pan, Fei ;
He, Liwen ;
Zhang, Li ;
Zhang, Yanming ;
Ling, Xuechen ;
Peng, Fujun ;
Yun, Weidong ;
Wen, Li .
ADVANCED INTELLIGENT SYSTEMS, 2021, 3 (10)
[9]  
Curletto G., 2016, Geometric and Structural Issues
[10]   Origami-based earthworm-like locomotion robots [J].
Fang, Hongbin ;
Zhang, Yetong ;
Wang, K. W. .
BIOINSPIRATION & BIOMIMETICS, 2017, 12 (06)