TrafficSCINet: An Adaptive Spatial-Temporal Graph Convolutional Network for Traffic Flow Forecasting

被引:2
作者
Gong, Kai [1 ]
Han, Shiyuan [1 ]
Yang, Xiaohui [1 ]
Yu, Weiwei [2 ]
Guan, Yuanlin [3 ]
机构
[1] Univ Jinan, Shandong Prov Key Lab Network Based Intelligent C, Jinan 250022, Peoples R China
[2] Shandong Big Data Ctr, Jinan, Peoples R China
[3] Qingdao Univ Technol, Key Lab Ind Fluid Energy Conservat & Pollut Contr, Minist Educ, Qingdao, Peoples R China
来源
ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I | 2023年 / 14086卷
基金
中国国家自然科学基金;
关键词
Traffic Flow Forecasting; Spatial-Temporal Data; Adaptive Adjacency Matrix;
D O I
10.1007/978-981-99-4755-3_54
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For complex nonlinear temporal and spatial correlation in traffic flow data, the accurate and effective traffic flow forecasting model is indispensable for understanding the traffic dynamics and predicting the future status of an evolving traffic system. In terms of spatial information extraction, existing approaches are mostly devoted to capture spatial dependency on a predefined graph, which assumes the relation between traffic nodes can be completely offered by an invariant graph structure. However, the fixed graph does not reflect real spatial dependency in traffic data. In this paper, a novel Adaptive Spatial-Temporal Graph Convolutional Network, named as TrafficSCINet, is proposed for traffic flow forecasting. Our model consists of two components: 1) AGCN module uses an adaptive adjacency matrix to dynamically learn the spatial dependencies between traffic nodes under different forecast horizon; 2) SCINet module extracts potential temporal information from traffic flow data through its superb temporal modeling capabilities. Two convolution modules in SCI-Block that have no effect on the results are removed to significantly improve the training speed of the model. Experimental results on four real-world traffic datasets demonstrate that TrafficSCINet achieves state-of-the-art performance consistently than other baselines.
引用
收藏
页码:628 / 639
页数:12
相关论文
共 50 条
  • [41] Traffic Flow Forecasting of Graph Convolutional Network Based on Spatio-Temporal Attention Mechanism
    Zhang, Hong
    Chen, Linlong
    Cao, Jie
    Zhang, Xijun
    Kan, Sunan
    Zhao, Tianxin
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2023, 24 (04) : 1013 - 1023
  • [42] Traffic Flow Forecasting of Graph Convolutional Network Based on Spatio-Temporal Attention Mechanism
    Hong Zhang
    Linlong Chen
    Jie Cao
    Xijun Zhang
    Sunan Kan
    Tianxin Zhao
    International Journal of Automotive Technology, 2023, 24 : 1013 - 1023
  • [43] AFSTGCN: Prediction for multivariate time series using an adaptive fused spatial-temporal graph convolutional network
    Xiao, Yuteng
    Xia, Kaijian
    Yin, Hongsheng
    Zhang, Yu-Dong
    Qian, Zhenjiang
    Liu, Zhaoyang
    Liang, Yuehan
    Li, Xiaodan
    DIGITAL COMMUNICATIONS AND NETWORKS, 2024, 10 (02) : 292 - 303
  • [44] TEA-GCN: Transformer-Enhanced Adaptive Graph Convolutional Network for Traffic Flow Forecasting
    He, Xiaxia
    Zhang, Wenhui
    Li, Xiaoyu
    Zhang, Xiaodan
    SENSORS, 2024, 24 (21)
  • [45] Learning continuous spatial-temporal evolution via dynamic graph neural differential equations for traffic flow forecasting
    Shi, Hongli
    Zhang, Wensheng
    INFORMATION SCIENCES, 2025, 700
  • [46] Spatiotemporal interactive learning dynamic adaptive graph convolutional network for traffic forecasting
    Jiang, Feng
    Han, Xingyu
    Wen, Shiping
    Tian, Tianhai
    KNOWLEDGE-BASED SYSTEMS, 2025, 311
  • [47] HSFE: A hierarchical spatial-temporal feature enhanced framework for traffic flow forecasting
    Lou, Jungang
    Zhang, Xinye
    Wang, Ruiqin
    Liu, Zhenfang
    Zhao, Kang
    Shen, Qing
    INFORMATION SCIENCES, 2024, 679
  • [48] Attention-Based Spatial-Temporal Convolution Gated Recurrent Unit for Traffic Flow Forecasting
    Zhang, Qingyong
    Chang, Wanfeng
    Yin, Conghui
    Xiao, Peng
    Li, Kelei
    Tan, Meifang
    ENTROPY, 2023, 25 (06)
  • [49] STEGNN: Spatial-Temporal Embedding Graph Neural Networks for Road Network Forecasting
    Si, Jiaqi
    Gan, Xinbiao
    Xiao, Tiaojie
    Yang, Bo
    Dong, Dezun
    Pang, Zhengbin
    2022 IEEE 28TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS, ICPADS, 2022, : 826 - 834
  • [50] Hierarchical multi-scale spatio-temporal semantic graph convolutional network for traffic flow forecasting
    Mu, Hongfan
    Aljeri, Noura
    Boukerche, Azzedine
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2025, 238