TrafficSCINet: An Adaptive Spatial-Temporal Graph Convolutional Network for Traffic Flow Forecasting

被引:2
|
作者
Gong, Kai [1 ]
Han, Shiyuan [1 ]
Yang, Xiaohui [1 ]
Yu, Weiwei [2 ]
Guan, Yuanlin [3 ]
机构
[1] Univ Jinan, Shandong Prov Key Lab Network Based Intelligent C, Jinan 250022, Peoples R China
[2] Shandong Big Data Ctr, Jinan, Peoples R China
[3] Qingdao Univ Technol, Key Lab Ind Fluid Energy Conservat & Pollut Contr, Minist Educ, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
Traffic Flow Forecasting; Spatial-Temporal Data; Adaptive Adjacency Matrix;
D O I
10.1007/978-981-99-4755-3_54
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For complex nonlinear temporal and spatial correlation in traffic flow data, the accurate and effective traffic flow forecasting model is indispensable for understanding the traffic dynamics and predicting the future status of an evolving traffic system. In terms of spatial information extraction, existing approaches are mostly devoted to capture spatial dependency on a predefined graph, which assumes the relation between traffic nodes can be completely offered by an invariant graph structure. However, the fixed graph does not reflect real spatial dependency in traffic data. In this paper, a novel Adaptive Spatial-Temporal Graph Convolutional Network, named as TrafficSCINet, is proposed for traffic flow forecasting. Our model consists of two components: 1) AGCN module uses an adaptive adjacency matrix to dynamically learn the spatial dependencies between traffic nodes under different forecast horizon; 2) SCINet module extracts potential temporal information from traffic flow data through its superb temporal modeling capabilities. Two convolution modules in SCI-Block that have no effect on the results are removed to significantly improve the training speed of the model. Experimental results on four real-world traffic datasets demonstrate that TrafficSCINet achieves state-of-the-art performance consistently than other baselines.
引用
收藏
页码:628 / 639
页数:12
相关论文
共 50 条
  • [31] Spatial-Temporal Dynamic Graph Differential Equation Network for Traffic Flow Forecasting
    Zhou, Junwei
    Qin, Xizhong
    Ding, Yuanfeng
    Ma, Haodong
    MATHEMATICS, 2023, 11 (13)
  • [32] Adaptive Spatial-Temporal Convolution Network for Traffic Forecasting
    Li, Zhao
    Zhang, Yong
    Zhang, Zhao
    Wang, Xing
    Zhu, Lin
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT II, 2022, 13369 : 287 - 299
  • [33] Dynamic Spatial-Temporal Convolutional Networks for Traffic Flow Forecasting
    Zhang, Hong
    Kan, Sunan
    Zhang, XiJun
    Cao, Jie
    Zhao, Tianxin
    TRANSPORTATION RESEARCH RECORD, 2023, 2677 (09) : 489 - 498
  • [34] PGCN: Progressive Graph Convolutional Networks for Spatial-Temporal Traffic Forecasting
    Shin, Yuyol
    Yoon, Yoonjin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (07) : 7633 - 7644
  • [35] Dynamic Spatial-Temporal Graph Convolutional Neural Networks for Traffic Forecasting
    Diao, Zulong
    Wang, Xin
    Zhang, Dafang
    Liu, Yingru
    Xie, Kun
    He, Shaoyao
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 890 - 897
  • [36] Generalized spatial-temporal regression graph convolutional transformer for traffic forecasting
    Xiong, Lang
    Su, Liyun
    Zeng, Shiyi
    Li, Xiangjing
    Wang, Tong
    Zhao, Feng
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (06) : 7943 - 7964
  • [37] Spatial-Temporal Dilated and Graph Convolutional Network for traffic prediction
    Yang, Guoliang
    Wen, Junlin
    Yu, Dinglin
    Zhang, Shuo
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 802 - 806
  • [38] Spatial-Temporal Bipartite Graph Attention Network for Traffic Forecasting
    Lakma, Dimuthu
    Perera, Kushani
    Borovica-Gajic, Renata
    Karunasekera, Shanika
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PT II, PAKDD 2024, 2024, 14646 : 68 - 80
  • [39] Hybrid spatial-temporal graph neural network for traffic forecasting
    Wang, Peng
    Feng, Longxi
    Zhu, Yijie
    Wu, Haopeng
    INFORMATION FUSION, 2025, 118
  • [40] Spatial-Temporal Graph Sandwich Transformer for Traffic Flow Forecasting
    Fan, Yujie
    Yeh, Chin-Chia Michael
    Chen, Huiyuan
    Wang, Liang
    Zhuang, Zhongfang
    Wang, Junpeng
    Dai, Xin
    Zheng, Yan
    Zhang, Wei
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE AND DEMO TRACK, ECML PKDD 2023, PT VII, 2023, 14175 : 210 - 225