TSPO exacerbates sepsis-induced cardiac dysfunction by inhibiting p62-Mediated autophagic flux via the ROS-RIP1/RIP3-exosome axis

被引:0
作者
Guo, Qiao [1 ]
Liao, Haitang [1 ,2 ]
Hao, Shuai [1 ,3 ]
Hou, Dongyao [4 ]
Liu, Ruixue [1 ]
Zhang, Yunting [5 ]
Tang, Xinhao [6 ]
Song, Rui [1 ]
Tan, Xuxin [1 ]
Luo, Zhenchun [2 ]
Huang, He [1 ]
Duan, Chenyang [1 ]
机构
[1] Chongqing Med Univ, Affiliated Hosp 2, Dept Anesthesiol, 76 Linjiang Rd, Chongqing 400010, Peoples R China
[2] Chongqing Tradit Chinese Med Hosp, Intens Care Unit, Chongqing 400021, Peoples R China
[3] Med Sch Nanjing Univ, Jinling Hosp, Res Inst Gen Surg, Med Sch, Nanjing 210002, Peoples R China
[4] Hubei Univ Med, Taihe Hosp, Dept Anesthesiol, Shiyan 442000, Peoples R China
[5] Chongqing Med Univ, Affiliated Hosp 2, Dept Lab Med, Chongqing 400010, Peoples R China
[6] Nanjing Univ Chinese Med, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Sepsis; Cardiomyopathy; TSPO; p62; LC3II/I; Reactive oxygen species (ROS); RIP; 1/RIP; 3; Autophagy flux; Exosomes; Inflammation; MITOCHONDRIAL; INJURY; ROS;
D O I
10.1016/j.freeradbiomed.2024.11.018
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Septic cardiomyopathy (SCM) is a critical complication of sepsis, primarily attributed to mitochondrial dysfunction and impaired autophagic flux. This study explores the role of translocator protein (TSPO) in SCM pathogenesis and assesses its potential as a therapeutic target. We identified increased TSPO expression in plasma samples from sepsis patients, with further validation in septic rats and LPS-stimulated H9C2 cardiomyocytes. Elevated TSPO disrupted mitochondrial function, leading to increased reactive oxygen species (ROS) production and activation of the RIP1/RIP3 pathway, which hindered p62-positive autophagosome degradation and promoted inflammation. Moreover, exosome release containing TSPO-positive autophagosomes into plasma may exacerbate systemic inflammation. NADH, identified as a TSPO-binding molecule, restored autophagic flux, improved mitochondrial function, and enhanced cardiac performance and survival in septic rats. These findings suggest that targeting TSPO with NADH could alleviate mitochondrial dysfunction and inflammatory responses in SCM, providing a promising therapeutic strategy for sepsis-induced cardiac injury.
引用
收藏
页码:56 / 69
页数:14
相关论文
共 49 条
  • [1] Barrett T, 2005, NUCLEIC ACIDS RES, V33, pD562
  • [2] Septic Cardiomyopathy
    Beesley, Sarah J.
    Weber, Gerhard
    Sarge, Todd
    Nikravan, Sara
    Grissom, Colin K.
    Lanspa, Michael J.
    Shahul, Sajid
    Brown, Samuel M.
    [J]. CRITICAL CARE MEDICINE, 2018, 46 (04) : 625 - 634
  • [3] Identification of a mechanism promoting mitochondrial sterol accumulation during myocardial ischemia-reperfusion: role of TSPO and STAR
    Brehat, Juliette
    Leick, Shirin
    Musman, Julien
    Su, Jin Bo
    Eychenne, Nicolas
    Giton, Frank
    Rivard, Michael
    Barel, Louis-Antoine
    Tropeano, Chiara
    Vitarelli, Frederica
    Caccia, Claudio
    Leoni, Valerio
    Ghaleh, Bijan
    Pons, Sandrine
    Morin, Didier
    [J]. BASIC RESEARCH IN CARDIOLOGY, 2024, 119 (03) : 481 - 503
  • [4] The First LHAASO Catalog of Gamma-Ray Sources
    Cao, Zhen
    Aharonian, F.
    An, Q.
    Axikegu
    Bai, Y. X.
    Bao, Y. W.
    Bastieri, D.
    Bi, X. J.
    Bi, Y. J.
    Cai, J. T.
    Cao, Q.
    Cao, W. Y.
    Cao, Zhe
    Chang, J.
    Chang, J. F.
    Chen, A. M.
    Chen, E. S.
    Chen, Liang
    Chen, Lin
    Chen, Long
    Chen, M. J.
    Chen, M. L.
    Chen, Q. H.
    Chen, S. H.
    Chen, S. Z.
    Chen, T. L.
    Chen, Y.
    Cheng, N.
    Cheng, Y. D.
    Cui, M. Y.
    Cui, S. W.
    Cui, X. H.
    Cui, Y. D.
    Dai, B. Z.
    Dai, H. L.
    Dai, Z. G.
    Danzengluobu
    della Volpe, D.
    Dong, X. Q.
    Duan, K. K.
    Fan, J. H.
    Fan, Y. Z.
    Fang, J.
    Fang, K.
    Feng, C. F.
    Feng, L.
    Feng, S. H.
    Feng, X. T.
    Feng, Y. L.
    Gabici, S.
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2024, 271 (01)
  • [5] Angiotensin-(1-7) ameliorates sepsis-induced cardiomyopathy by alleviating inflammatory response and mitochondrial damage through the NF-κB and MAPK pathways
    Chen, Xin-Sen
    Cui, Jing-Rui
    Meng, Xiang-Long
    Wang, Shu-Hang
    Wei, Wei
    Gao, Yu-Lei
    Shou, Song-Tao
    Liu, Yan-Cun
    Chai, Yan-Fen
    [J]. JOURNAL OF TRANSLATIONAL MEDICINE, 2023, 21 (01)
  • [6] Mitochondrial Drp1 recognizes and induces excessive mPTP opening after hypoxia through BAX-PiC and LRRK2-HK2
    Duan, Chenyang
    Kuang, Lei
    Hong, Chen
    Xiang, Xinming
    Liu, Jiancang
    Li, Qinghui
    Peng, Xiaoyong
    Zhou, Yuanqun
    Wang, Hongchen
    Liu, Liangming
    Li, Tao
    [J]. CELL DEATH & DISEASE, 2021, 12 (11)
  • [7] Drp1 regulates mitochondrial dysfunction and dysregulated metabolism in ischemic injury via Clec16a-, BAX-, and GSH- pathways
    Duan Chenyang
    Kuang Lei
    Xiang Xinming
    Zhang Jie
    Zhu Yu
    Wu Yue
    Yan Qingguang
    Liu Liangming
    Li Tao
    [J]. CELL DEATH & DISEASE, 2020, 11 (04)
  • [8] Evans L, 2021, INTENS CARE MED, V47, P1181, DOI [10.1007/s00134-021-06506-y, 10.1097/CCM.0000000000005337]
  • [9] Protective Effects of Euthyroidism Restoration on Mitochondria Function and Quality Control in Cardiac Pathophysiology
    Forini, Francesca
    Nicolini, Giuseppina
    Kusmic, Claudia
    Iervasi, Giorgio
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (14)
  • [10] TSPO deficiency induces mitochondrial dysfunction, leading to hypoxia, angiogenesis, and a growth-promoting metabolic shift toward glycolysis in glioblastoma
    Fu, Yi
    Wang, Dongdong
    Wang, Huaishan
    Cai, Menghua
    Li, Chao
    Zhang, Xue
    Chen, Hui
    Hu, Yu
    Zhang, Xuan
    Ying, Mingyao
    He, Wei
    Zhang, Jianmin
    [J]. NEURO-ONCOLOGY, 2020, 22 (02) : 240 - 252